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Structured Vibration Modes
of General Compound Planetary
Gear Systems
This paper extends previous analytical models of simple, single-stage planetary gears to
compound, multi-stage planetary gears. This model is then used to investigate the struc-
tured vibration mode and natural frequency properties of compound planetary gears of
general description, including those with equally spaced planets and diametrically op-
posed planet pairs. The well-defined cyclic structure of simple, single-stage planetary
gears is shown to be preserved in compound, multi-stage planetary gears. The vibration
modes are classified into rotational, translational, and planet modes and the unique
properties of each type are examined and proved for general compound planetary gears.
All vibration modes fall into one of these three categories. For most cases, both the
properties of the modes and the modes themselves are shown to be insensitive to relative
planet positions between stages of a multi-stage system. �DOI: 10.1115/1.2345680�
Introduction
Planetary gears are widely used in many applications due to

dvantages over parallel shaft arrangements such as high power
ensity and large reduction in a small volume �1�. In fixed-ratio
pplications requiring a reduction of approximately 10:1 or less, a
imple �i.e., single planet for each load path�, single-stage plan-
tary gear is often sufficient. For fixed-ratio applications requiring
reater reductions, however, compound planetary gears are com-
on �2�. Automatic transmissions require more kinematic combi-

ations than a single planetary can provide, so they also utilize
ompound planetary gears. Despite their benefits, Kahraman �3�
otes that compound planetary gears often have more noise and
ibration problems than simple planetary gears.

Although the vibration of simple, single-stage planetary gears
as been studied by many researchers �e.g., �4–16��, the vibration
f compound or multi-stage planetary gearsets has received little
esearch attention. To the authors’ knowledge, Kahraman �3� con-
ucted the only analytical study of the vibration of compound
lanetary gears. In that work, a purely rotational model that does
ot include gear translation is applied to a restricted class of com-
ound planetary gears, and modal properties are given based on
imulation rather than derivation.

For simple, single-stage planetaries, Lin and Parker �4� ana-
yzed the free vibration and proved that there are exactly three
ypes of modes: Rotational, translational, and planet. They showed
ertain unique properties for these modes. These findings are con-
istent with finite element results �8�. Recent industry-motivated
nalyses by the authors investigated a variety of compound and
ulti-stage planetary gearsets and found that they all exhibited
odal characteristics similar to a simple, single-stage planetary

ear. The intent of this work is to generalize prior results and
athematically prove that compound, multi-stage planetary gear

ystems of general description possess highly structured modal
roperties analogous to simple, single-stage planetary gears. This
ork includes all of the cases considered in Kahraman’s model

3�. It expands on that work by allowing an infinite number of
inematic combinations instead of a limited number, including
ranslational degrees of freedom in addition to rotations, and pro-
iding analytical proof of the modal properties in addition to nu-
erical verification.

Contributed by the Technical Committee on Vibration and Sound of ASME for
ublication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received August

, 2005; final manuscript received May 8, 2006. Assoc. Editor: George T. Flowers.

ournal of Vibration and Acoustics Copyright © 20

loaded 22 Nov 2011 to 128.210.126.199. Redistribution subject to ASM
2 Modeling and Equations of Motion

There are many different kinds of gear sets that are referred to
as compound planetary gears. The present work attempts to be as
general as possible in its definition. Three different types of com-
pound planetary gears are described. The first two are the stepped
planet planetary �Fig. 1�, and the meshed planet planetary �Fig. 2�
�17�. The third type, the multi-stage planetary, �Fig. 3� is created
by joining multiple planetary stages together, where each stage
can be a simple, meshed, or stepped planetary. No limitations are
imposed on which elements are the input or output members.

In deriving the equations of motion, it is necessary to system-
atically enumerate the three types of elements in a planetary gear:
Carriers, central gears �suns and rings�, and planets. Let the car-
riers be numbered 1,2 , . . . ,a and the central gears be numbered
1,2 , . . . ,b. In order to describe the planets, it is convenient to
divide them into groups.

First, each planet is always associated with one and only one
carrier. Thus, it is natural to define a planet set to be all of the
planets associated with a particular carrier. Within each planet set,
the planets are partitioned into isolated planet trains. Two planets
are considered to be in the same planet train if they: �a� Mesh with
each other, or �b� are connected to each other by a shaft �as in
stepped planets�. The planet train concept is illustrated in Figs. 1
and 2.

Let the planet sets be numbered 1,2 , . . . ,a, where planet set i is
associated with carrier i. Let the planet trains be numbered
1,2 , . . . ,ci, where ci designates the number of planet trains in
planet set i. Let the planets in a train be numbered 1,2 , . . . ,di,
where di designates the number of planets per planet train in
planet set i. The model requires all planet trains in a planet set to
have the same number of planets, which is generally the case in
practical systems.

2.1 Coordinates and Geometric Description. A planar prob-
lem is considered where each carrier, planet, and central gear has
three degrees of freedom: Two translational and one rotational.
This limits the analysis to spur gears. In total, the model has
3�a+b+�i=1

a cidi� degrees of freedom.
The choice of a coordinate basis for the multi-stage case pre-

sents some options. For single stage planetaries, Lin and Parker
�4� chose a basis that rotates with the carrier. This allows the
planet positions to be described by fixed angles even with gear

rotation. In the present case, there are potentially several different
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arriers, each rotating at different speeds. It is possible to con-
truct multiple rotating bases and then describe the coupling be-
ween the rotating components by means of time-varying coordi-
ate transformations. Another possibility is to describe all
omponents in a single fixed basis and then allow the planet po-
ition angles to change with time. Either choice leads to a time-
arying stiffness matrix under operating conditions. For the
resent work considering free vibration, the second choice is more
onvenient.

Using a fixed basis, translational coordinates xc
i , yc

i are assigned
o the carriers and translational coordinates xg

j , yg
j are assigned to

he central gears �suns and rings�. The xc
i and xg

j coordinates are
hosen to be positive towards the equilibrium position of the ar-
itrarily chosen first planet of the first planet train of the first
lanet set at time t=0. Translational coordinates �p

ilm, �p
ilm are

ssigned to planet m in planet train l in planet set i. These are
adial and tangential coordinates, respectively �Fig. 4�. The origin
f the �p

ilm, �p
ilm coordinates is fixed at each planet’s equilibrium

osition and does not translate with carrier vibration, that is, �p
ilm

nd �p
ilm are absolute �not relative� deflections.

These coordinates illustrate conventions that are followed
hroughout this paper. For all variables, subscripts denote labels
nd superscripts denote indices. Indices denoting the gear and
arrier �if any� always precede indices for the planet set, planet
rain, and planet �if any�. Indices denoting the planet set, planet
rain, and planet are always in that order. Not all of these indices
ill be present for every variable. In general, i is used for denot-

ng carriers and planet sets, j for central gears, l for planet trains,
nd m for planets. Some expressions require more than one of a

ig. 1 Example of a stepped planet compound planetary gear
/ Vol. 129, FEBRUARY 2007
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particular component type �e.g., two central gears�. In that case an
additional index �either n or f� will be used for the second com-
ponent. Which component the second index represents can be de-
termined from context. For example, in mp

ilm, the indices are planet
set, planet train, and planet while in kg,xx

jn the indices are both
gears.

In �4�, all rotational coordinates are chosen to be u=r�, where r
is the base radius for gears and the radius from the carrier center
to the planet center for carriers. In the present work, this form
cannot be used for the carrier because the meshed planet case has
planets at multiple radii �e.g., Fig. 2�. Thus, the carrier rotational
coordinate must be �. It is then more convenient to use � instead
of u for central gears as well. Due to this difference, the matrices
Kc1, Kg1, Kcp, and Kgp given in Appendix C differ from the
corresponding matrices in �4�. For the planets, the choice is arbi-
trary. u is used because it simplifies the notation. Therefore, cor-
responding planet matrices are the same as in �4�.

The circumferential planet locations are specified by the time-
varying �under operating conditions� angles �ilm�t�, where
�111�0�=0. To describe the orientation of meshed planets with
respect to each other, the angle �ilmn is introduced. This angle is
measured counterclockwise from the positive � direction of planet
m to a line connecting the centers of planets m and n �both planets
are in planet set i, planet train l�. This is illustrated in Fig. 4,
where both �ilmn and �ilnm are shown.

2.2 Equations of Motion. The equations of motion are simi-
lar to �4� except there are more elements and they can be coupled
in additional ways. Gyroscopic effects are neglected. The equa-

Fig. 3 Example of a multi-stage compound planetary gear

Fig. 4 A planet-planet mesh modeled by a linear spring and
static transmission error
ig. 2 Example of a meshed planet compound planetary gear
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ions of motion of a central gear are derived as an example. The
orces/moments on a central gear fall into five categories: Gear-
ear forces/moments, gear-carrier forces/moments, gear-ground
earing forces/moments, gear-planet mesh forces, and externally
pplied forces/moments. The first three are easily described. Mod-
ling the interaction as a linear spring, such as from a connecting
haft, the gear-gear force between gears j and n in the x direction
s described by kg,xx

jn �xg
j −xg

n�. Similar terms occur for the y and �
oordinates as well as the gear-carrier and gear-ground forces/
oments. Note that central gears never mesh with other central

ears.
Gear-planet mesh forces are more complicated to describe. The

ear-planet mesh between gear j and planet m of planet train l,
lanet set i is shown in Fig. 5. This is nearly identical to Fig. 2 in
4�, except that all elements are enumerated with additional sub-
cripts and superscripts. For clarity, � indicates a tooth mesh stiff-
ess, K indicates a torsional shaft stiffness, and k indicates a trans-
ational bearing or shaft stiffness. Although a sun is shown in Fig.
, the situation for a ring is similar. The equations for a ring and a
un differ only in the sign of a few terms. In order to generalize
hese equations, the variable � j is introduced as

� j = �1 if gear j is a ring �internal gear�
− 1 if gear j is a sun �external gear� �

In order to represent the changing number of teeth in contact,
he gear-planet mesh is modeled as a time-varying mesh stiffness

gp
jilm�t�. The deflection of the tooth mesh is

�g
jilm = yg

j cos �g
jilm�t� − xg

j sin �g
jilm�t� + rg

j �g
j + � j�p

ilm sin 	g
jilm

− �p
ilm cos 	g

jilm − � jup
ilm + egp

jilm�t�

�g
jilm�t� = �ilm�t� + � j	g

jilm �1�

here 	g
jilm is the pressure angle of the mesh, and egp

jilm�t� is the
ime-varying, unloaded static transmission error �compression is
ositive�, which can be used to model excitation due to profile
odifications and manufacturing errors.
Denoting externally applied forces and torques by Fg

j , 
g
j , re-

pectively, and mass and mass moment of inertia by Ig
j , mg

j , re-

ig. 5 A sun-planet mesh modeled by a linear spring and
tatic transmission error
pectively, the equations of motion for gear j are
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mg
j ẍg

j + kgb,xx
j xg

j − �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�t��g

jilm sin �g
jilm�t� + �

i=1

a

kcg,xx
ij

��xg
j − xc

i � + �
n=1,n�j

b

kg,xx
jn �xg

j − xg
n� = Fg,xx

j �t�

mg
j ÿg

j + kgb,yy
j yg

j + �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�t��g

jilm cos �g
jilm�t� + �

i=1

a

kcg,yy
ij

��yg
j − yc

i � + �
n=1,n�j

b

kg,yy
jn �yg

j − yg
n� = Fg,yy

j �t�

Ig
j �̈g

j + Kgb,��
j �g

j + �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�t��g

jilmrg
j + �

i=1

a

Kcg,��
ij ��g

j − �c
i �

+ �
n=1,n�j

b

Kg,��
jn ��g

j − �g
n� = 
g

j �t� �2�

where all symbols are defined in the Nomenclature section.
The equations of motion for the planets �see Fig. 4� and the

carriers are similarly obtained. These are given in Appendix A.
For notational convenience, the bearings between the planets and
the carriers are assumed to be isotropic �i.e., have the same stiff-
ness in all directions�.

The equations of motion for the system are written in matrix
form as

Mẍ�t� + �Kb + Km�t��x�t� = F�t� �3�

where M is the positive definite mass matrix, Kb is the diagonal
bearing stiffness matrix, Km�t� is the symmetric stiffness matrix
from coupling between elements �both tooth meshes and shaft
couplings�, and F�t� is the vector of applied forces and torques.
The vector x and matrix components are given in Appendix B.

3 Natural Frequencies and Vibration Modes
To determine the natural frequencies and vibration modes the

time-invariant system is considered. All mesh stiffnesses are con-
sidered to be constant and equal to their average stiffness over one
mesh cycle. The planet position angles �ilm�t� are fixed at their
values for some arbitrary time. All externally applied forces/
moments are assumed to be zero.

The associated eigenvalue problem derived from x�t�=qei�t is

�2Mq = �Kb + Km�q �4�

q = �qc
1
¯ qc

a�qg
1
¯ qg

b�qps
1

¯ qps
a �T �5�

The individual vectors for the carriers and gears are

qc
i = �xc

i yc
i �c

i �T, qg
j = �xg

j yg
j �g

j�T �6�

The planet set, planet train, and planet vectors are

qps
i = �qpt

i1
¯ qpt

ici
�T, qpt

il = �qp
il1

¯ qp
ildi

�T,

qp
ilm = ��p

ilm �p
ilm up

ilm�T �7�
Expanding �4� into three groups of equations for the individual

components according to the matrix definitions in Appendix B
yields

�Kcb
i − �2Mc

i �qc
i + �

f=1

a

Kc
ifqc

f + �
j=1

b

Kcg
ij qg

j + Kc,ps
i qps

i = 0
i = 1,2, . . . ,a �8�
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�Kgb
j − �2Mg

j �qg
j + �

n=1

b

Kg
jnqg

n + �
i=1

a

�Kcg
ij �Tqc

i + �
i=1

a

Kg,ps
ji qps

i = 0

j = 1,2, . . . ,b �9�

�Kps
i − �2Mps

i �qps
i + �Kc,ps

i �Tqc
i + �

j=1

b

�Kg,ps
ji �Tqg

j = 0 i = 1,2, . . . ,a

�10�

The following additional assumptions are imposed:

�1� All planet trains within a planet set are identical in all ways
�mass, tooth parameters, bearing properties, etc.�;

�2� All planet trains are equally spaced around their associated
carrier. The case with diametrically opposed pairs of planet
trains is discussed later;

�3� For each planet set there are three or more planet trains
�ci
3�. In practice, almost all planetary gears have three or
more planets to take advantage of load sharing. The case
with two equally spaced planet trains is considered later as
a case of diametrically opposed planet trains;

Table 1 Parameters of
�4� All bearing and shaft stiffnesses are isotropic.

/ Vol. 129, FEBRUARY 2007
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These assumptions lead to a cyclically symmetric structure with
distinctive vibration properties. These properties are first illus-
trated by an example using the parameters in Table 1. This system
is shown schematically in Fig. 6. It is a two stage system where
the first stage has both meshed and stepped planets and the second
stage has only simple planets. The ring gear is common to both

ample system in Fig. 6
ex
Fig. 6 Example system
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tages. The system has 66 degrees of freedom. The natural fre-
uencies and their multiplicities are shown in Table 2.

All vibration modes for this system can be classified into one of
hree types. Typical vibration modes of each type are shown in
igs. 7–9. The equilibrium positions of the gears and carriers are
hown as dashed lines. The equilibrium positions of the planets
ith respect to the displaced carriers are shown as light lines. The
isplaced positions of the suns and planets are shown as heavy
ines. Dots represent the component centers. Motion of the ring is
mitted for clarity.

Figure 7 illustrates a type of mode where all central gears and
arriers have pure rotation and no translation. These are named
otational modes. In a rotational mode, all planet trains within a
iven planet set have identical motion. There are exactly a+b
3�i=1

a di=17 rotational modes, each with an associated natural
requency of multiplicity one �distinct�.

Figure 8 shows a pair of degenerate modes that have the same
atural frequency. All central gears and carriers have pure trans-
ational motion with no rotation. These are called translational
odes. There are exactly a+b+3�i=1

a di=17 degenerate pairs of
ranslational modes, where each pair has an associated natural
requency of multiplicity two. Well-defined relations between the
lanet motions will be shown.

Figure 9 illustrates two modes where the carriers and central
ears have no motion; the planets are the only components that
eflect. These are called planet modes. A given mode is associated

able 2 Natural frequencies and their multiplicities m for the
xample system. Rotational, translational, and planet modes
re distinguished by R, T, and P, respectively.
ith motion of the planets of exactly one planet set and planets in

ournal of Vibration and Acoustics
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all other planet sets have no motion. In general, each natural fre-
quency associated with planet set i has multiplicity ci−3. Thus,
planet modes exist only for planet sets containing four or more
planet trains. If planet modes exist for planet set i, then there are
3di different natural frequencies for that set’s planet modes �each
with multiplicity ci−3�. So, there are exactly 3�i=1

a �ci−3�di=15
planet modes. The number of different natural frequencies for a
planet set’s planet modes is dictated by the number of degrees of
freedom in one planet train; their multiplicity is dictated by the
number of trains in the set. Finally, each planet train’s motions are
a scalar multiple of the first �or any arbitrarily chosen� planet
train’s motions. Equations governing these scalars will be derived.

The above properties of the modes, which have been drawn
from numerical results, are now proven analytically. The proof
proceeds by proposing candidate modes based on the numerical
results and substituting them into the equations of motion. For
each type of mode, a reduced degree of freedom eigenvalue prob-
lem is found. The total number of eigenvalues is shown to equal
the total number of degrees of freedom in the system, so the three
mode types are an exhaustive list of the possible mode types.

The equations of motion contain many sums over the planets
and planet trains, and many of these can be simplified with the
numbered assumptions noted above. Assumption 1 leads directly
to the simplifications

Mpt
il = Mpt

i1, Kpt
il = Kpt

i1 for all i,l �11�

Assumption 2 is stated formally as �i�l+1�m=2� /ci+�ilm for all
i , l ,m. Together with assumption 3, this implies the relations

�
l=1

ci

sin �ilm = 0, �
l=1

ci

cos �ilm = 0 �12�

�
ci

cos �ilm sin �ilm = 0 �13�

Fig. 7 Typical rotational mode for example system of Fig. 6
and Table 1, �=932.0 Hz
l=1

FEBRUARY 2007, Vol. 129 / 5
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�
l=1

ci

cos �ilm sin �̂ilm = − �
l=1

ci

cos �̂ilm sin �ilm �14�

�
ci

cos2 �ilm = �
ci

sin2 �ilm �15�

ig. 8 A pair of typical translational modes for example sys-
em of Fig. 6 and Table 1, �=3499.2 Hz
l=1 l=1

/ Vol. 129, FEBRUARY 2007
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�
l=1

ci

cos �ilm cos �̂ilm = �
l=1

ci

sin �ilm sin �̂ilm �16�

ˆ ilm ilm i1m ˆ i1m

Fig. 9 Two typical planet modes for the example system of
Fig. 6 and Table 1. „a… A mode in which stage 1 planets have
motion and stage 2 has no motion, �=2382.2 Hz „b… A mode in
which stage 1 has no motion and stage 2 planets have motion,
�=3890.2 Hz.
where � =� −� so that � =0 for all i , l ,m.
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Because Assumption 1 implies 	g
jilm=	g

ji1m for all l, �12�–�16�
lso hold if �ilm is replaced with �g

jilm, where �g
jilm=�ilm

� j	g
jilm. Specifically,

�
l=1

ci

sin �g
jilm = 0, �

l=1

ci

cos �g
jilm = 0 �17�

�
l=1

ci

cos �g
jilm sin �g

jilm = 0 �18�

�
l=1

ci

cos �g
jilm sin �̂ jilm = − �

l=1

ci

cos �̂ jilm sin �g
jilm �19�

�
l=1

ci

cos2 �g
jilm = �

l=1

ci

sin2 �g
jilm �20�

�
l=1

ci

cos �g
jilm cos �̂ jilm = �

l=1

ci

sin �g
jilm sin �̂ jilm �21�

here �̂g
jilm=�g

jilm−�g
ji1m.

3.1 Rotational Modes. A candidate rotational mode of the
orm �5�–�7� is given by

qc
i = �0 0 �c

i �T qg
j = �0 0 �g

j �T

qps
i = �qpt

i1 qpt
i1

¯ qpt
i1�T

i = 1,2, . . . ,a

j = 1,2, . . . ,b
�22�

his candidate mode must satisfy the eigenvalue problem of
8�–�10�. Insertion of �22� into �8� and use of �12� and Assumption

yields a equations �the other 2a equations are identically satis-
ed� that simplify to

Kcb,��
i �c

i − �2Ic
i �c

i + ci�
m=1

di

�rc
i1m�2kp

i1m�c
i + �

f=1,f�i

a

Kc,��
if ��c

i − �c
f�+

�
j=1

b

Kcg,��
ij ��c

i − �g
j � − ci�

m=1

di

rc
i1mkp

i1m�p
i1m = 0

i = 1,2, . . . ,a �23�

nsertion of �22� into �9� and use of �17� and Assumption 1 yields
equations

Kgb,��
j �g

j − �2Ig
j �g

j + �
i=1

a

Kcg,��
ij ��g

j − �c
i � + �

n=1,n�j

b

Kg,��
jn ��g

j − �g
n�

+ rg
j �

i=1

a

ci�
m=1

di

�gp
ji1m�rg

j �g
j + �i�p

i1m sin 	g
ji1m − �p

i1m cos 	g
ji1m

− � jup
i1m� = 0, j = 1,2, . . . ,b �24�
nsertion of �22� into �10� and use of �11� yields
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Kpt

i1

Kpt
i1

�

Kpt
i1
� − �2


Mpt
i1

Mpt
i1

�

Mpt
i1
��


qpt
i1

qpt
i1

]

qpt
i1
�

+ 

�Kc,pt

i1 �T

�Kc,pt
i2 �T

]

�Kc,pt
ici

�T
�
 0

0

�c
i � + �

j=1

b 

�Kg,pt

ji1 �T

�Kg,pt
ji2 �T

]

�Kg,pt
�jici��T

�
 0

0

�g
j � = 0,

i = 1,2, . . . ,a �25�
By Assumption 1, the product in the next to last term in �25� is

the same for every planet train, that is, the following product is
independent of l for arbitrary i:

�Kc,pt
il �T
 0

0

�c
i � = �0 − rc

i11�c
i 0 0 − rc

i12�c
i 0 ¯ 0

− rc
i1di

�c
i 0�T for all i,l

A similar result holds for the last term in �25�. Thus, for each i,
�25� consists of ci sets of identical equations and thus can be
represented by the single independent set for the first planet train.
Specifically,

	

Kp

i111 Kp
i112

¯ Kp
i11di

Kp
i121 Kp

i122
]

] � ]

Kp
i1di1

¯ ¯ Kp
i1didi

�
− �2


Mp
i111

Mp
i122

�

Mp
i1didi ��


qp
i11

qp
i12

]

qp
i1di � + 


�Kcp
i11�T

�Kcp
i12�T

]

�Kcp
i1di

�T
�

�
 0

0

�c
i � + �

j=1

b 

�Kgp

ji11�T

�Kgp
ji12�T

]

�Kgp
ji1di

�T
�
 0

0

�g
j � = 0, i = 1,2, . . . ,a �26�

Equations �23�, �24�, and �26� consist of a+b+3�i=1
a di linear,

homogenous equations for a+b+3�i=1
a di unknowns and the pa-

rameter �2. Thus �23�, �24�, and �26� constitute a reduced degree
of freedom eigenvalue problem yielding a+b+3�i=1

a di natural fre-
quencies and rotational modes. From the solutions of the reduced
eigenvalue problem, rotational vibration modes of the full system
are constructed according to �22�. In the general case these eigen-
values are distinct. In certain cases, however, parameters may be
such that two or more eigenvalues coincide. For example, con-
sider the example presented in the last section �Fig. 6 and Table 1�
but allow the ring gear to spin freely �i.e., kgb,��

2 =0�. In this case,
there are two different rotational rigid body modes ��=0�.

3.2 Translational Modes. A candidate pair of translational
modes of the form �5�–�7� with degenerate natural frequency � is
given by

q = �qc
1
¯ qc

a�qg
1
¯ qg

b�qps
1

¯ qps
a �T �27�

q̄ = �q̄c
1
¯ q̄c

a�q̄g
1
¯ q̄g

b�q̄ps
1

¯ q̄ps
a �T �28�

�the overbar does not denote complex conjugate�. These are or-
¯T
thogonal with respect to the mass matrix such that q Mq=0. The
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arrier, gear, and planet translations are related by1

qc
i = �xc

i yc
i 0�T, q̄c

i = �yc
i − xc

i 0�T �29�

qg
j = �xg

j yg
j 0�T, q̄g

j = �yg
j − xg

j 0�T �30�


qp
ilm

q̄p
ilm � = 
 Cilm Silm

− Silm Cilm �
qp
i1m

q̄p
i1m � �31�

here Silm=I sin �̂ilm, Cilm=I cos �̂ilm and I is the 3�3 identity
atrix. It remains to show that this candidate mode pair satisfies

8�–�10�.
Substitution of �27� into �8� yields a equations that simplify to

1Note the sign differences between �30� and the corresponding equation in Lin
nd Parker’s derivation �4�. This is a typographical error in �4� that is corrected in
his paper.
Insertion of the candidate mode q of �27� into �9� yields
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�kcb,xx
i − �2mc

i �xc
i

�kcb,yy
i − �2mc

i �yc
i

0
�

+ 
�l=1

ci

�
m=1

di

kp
ilmxc

i + �
f=1,f�i

a

kc,xx
if �xc

i − xc
f� + �

j=1

b

kcg,xx
ij �xc

i − xg
j �

�
l=1

ci

�
m=1

di

kp
ilmyc

i + �
f=1,f�i

a

kc,yy
if �yc

i − yc
f� + �

j=1

b

kcg,yy
ij �yc

i − yg
j �

�
l=1

ci

�
m=1

di

�− rc
ilmxc

i sin �ilm + rc
ilmyc

i cos �ilm�
�

+ �
l=1

ci

Kc,pt
il qpt

il = 0, i = 1,2, . . . ,a �32�

The last term in �32�, which represents the planet trains, is ex-
panded using �31� and the matrix definitions in Appendix B as
�
l=1

ci

Kc,pt
il qpt

il = �
l=1

ci

�
m=1

di

Kcp
ilmqp

ilm = �
l=1

ci

�
m=1

di

Kcp
ilm�qp

i1m cos �̂ilm + q̄p
i1m sin �̂ilm�

= �
l=1

ci

�
m=1

di

kp
ilm
− ��p

i1m cos �̂ilm + �̄p
i1m sin �̂ilm�cos �ilm + ��p

i1m cos �̂ilm + �̄p
i1m sin �̂ilm�sin �ilm

− ��p
i1m cos �̂ilm + �̄p

i1m sin �̂ilm�sin �ilm − ��p
i1m cos �̂ilm + �̄p

i1m sin �̂ilm�cos �ilm

− rc
ilm��p

i1m cos �̂ilm + �̄p
i1m sin �̂ilm�

� �33�

nsertion of �33� into �32�, simplification using �12�, and deletion of equations that are satisfied identically �the third equation� yields the
wo equations


�kcb,xx
i − �2mc

i �xc
i

�kcb,yy
i − �2mc

i �yc
i � + 
�

l=1

ci

�
m=1

di

kp
ilmxc

i + �
f=1,f�i

a

kc,xx
if �xc

i − xc
f� + �

j=1

b

kcg,xx
ij �xc

i − xg
j �

�
l=1

ci

�
m=1

di

kp
ilmyc

i + �
f=1,f�i

a

kc,yy
if �yc

i − yc
f� + �

j=1

b

kcg,yy
ij �yc

i − yg
j � �

+ �
l=1

ci

�
m=1

di

kp
i1m
− ��p

i1m cos �̂ilm + �̄p
i1m sin �̂ilm�cos �ilm + ��p

i1m cos �̂ilm + �̄p
i1m sin �̂ilm�sin �ilm

− ��p
i1m cos �̂ilm + �̄p

i1m sin �̂ilm�sin �ilm − ��p
i1m cos �̂ilm + �̄p

i1m sin �̂ilm�cos �ilm
� = 0 i = 1,2, . . . ,a �34�

ubstitution of q̄ from �28� into �8� and use of the same simplification process as for q yields


 �kcb,xx
i − �2mc

i �yc
i

− �kcb,yy
i − �2mc

i �xc
i � + 
 �

l=1

ci

�
m=1

di

kp
ilmyc

i + �
f=1,f�i

a

kc,xx
if �yc

i − yc
f� + �

j=1

b

kcg,xx
ij �yc

i − yg
j �

− �
l=1

ci

�
m=1

di

kp
ilmxc

i + �
f=1,f�i

a

kc,yy
if �xc

f − xc
i � + �

j=1

b

kcg,yy
ij �xg

j − xc
i � �

+ �
l=1

ci

�
m=1

di

kp
i1m
− �− �p

i1m sin �̂ilm + �̄p
i1m cos �̂ilm�cos �ilm + �− �p

i1m sin �̂ilm + �̄p
i1m cos �̂ilm�sin �ilm

− �− �p
i1m sin �̂ilm + �̄p

i1m cos �̂ilm�sin �ilm − �− �p
i1m sin �̂ilm + �̄p

i1m cos �̂ilm�cos �ilm
� = 0 i = 1,2, . . . ,a �35�

sing �14�, �16�, and assumption 4, it can be shown that only 2a of the 4a equations in �34� and �35� are linearly independent �e.g., the
rst equation in �34� and the second equation in �35� can be shown to be identical except for a factor of −1�. Thus, �34� and �35� can
e represented by �34� alone.
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 �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�xg

j sin2 �g
jilm − yg

j cos �g
jilm sin �g

jilm� + �
n=1,n�j

b

kg,xx
nj �xg

j − xg
n� + �

i=1

a

kcg,xx
ij �xg

j − xc
i �

�
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�− xg

j cos �g
jilm sin �g

jilm + yg
j cos2 �g

jilm� + �
n=1,n�j

b

kg,yy
nj �yg

j − yg
n� + �

i=1

a

kcg,yy
ij �yg

j − yc
i �

�
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�− rg

j xg
j sin �g

jilm + rg
j yg

j cos �g
jilm�

� + 
�kgb,xx
j − �2mg

j �xg
j

�kgb,yy
j − �2mg

j �yg
j

0
�

+ �
i=1

a

�
l=1

ci

Kg,pt
jil qpt

il = 0, j = 1,2, . . . ,b �36�

s before, the last term is expanded using �31� and the matrix definitions in Appendix B as

�
i=1

a

�
l=1

ci

Kg,pt
jil qpt

il = �
i=1

a

�
l=1

ci

�
m=1

di

Kgp
jilmqp

ilm = �
i=1

a

�
l=1

ci

�
m=1

di

Kgp
jilm�qp

i1m cos �̂ilm + q̄p
i1m sin �̂ilm� = �

i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�cos �̂ilm
 zjilm sin �g

jilm

− zjilm cos �g
jilm

− rg
j zjilm �

+ sin �̂ilm
 z̄ jilm sin �g
jilm

− z̄ jilm cos �g
jilm

− rg
j z̄jilm �� j = 1,2, . . . ,b �37�

zjilm = − � j�p
i1m sin 	g

jilm + �p
i1m cos 	g

jilm + � jup
i1m

z̄jilm = − � j�̄p
i1m sin 	g

jilm + �̄p
i1m cos 	g

jilm + � jūp
i1m �38�

here zjilm and z̄ jilm are introduced for convenience. By Assumption 1, zjilm=zji1m for all i , j , l ,m. Using this and �12�, �37� simplifies
o

�
i=1

a

�
l=1

ci

Kg,pt
jil qpt

jl = �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm
 �zji1m cos �̂ilm + z̄ ji1m sin �̂ilm�sin �g

jilm

− �zji1m cos �̂ilm + z̄ ji1m sin �̂ilm�cos �g
jilm

0
� j = 1,2, . . . ,b �39�

y substitution of �39� into �36� and use of �17� and �18� the third equation in �36� vanishes identically and the first two yield


�kgb,xx
j − �2mg

j �xg
j

�kgb,yy
j − �2mg

j �yg
j � + 
�

i=1

a

�
l=1

ci

�
m=1

di

�gp
jilmxg

i sin2 �g
jilm + �

n=1,n�j

b

kg,xx
nj �xg

j − xg
n� + �

i=1

a

kcg,xx
ij �xg

j − xc
i �

�
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilmyg

i cos2 �g
jilm + �

n=1,n�j

b

kg,yy
nj �yg

j − yg
n� + �

i=1

a

kcg,yy
ij �yg

j − yc
i � �

+ �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm
 �zji1m cos �̂ilm + z̄ ji1m sin �̂ilm�sin �g

jilm

− �zji1m cos �̂ilm + z̄ ji1m sin �̂ilm�cos �g
jilm� = 0 j = 1,2, . . . ,b �40�

nsertion of the candidate mode q̄ of �28� into �9� and use of the same simplification process as for q yields


 �kgb,xx
j − �2mg

j �yg
j

− �kgb,yy
j − �2mg

j �xg
j � + 
 �

i=1

a

�
l=1

ci

�
m=1

di

�gp
jilmyg

i sin2 �g
jilm + �

n=1,n�j

b

kg,xx
nj �yg

j − yg
n� + �

i=1

a

kcg,xx
ij �yg

j − yc
i �

− �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilmxg

i cos2 �g
jilm + �

n=1,n�j

b

kg,yy
nj �xg

n − xg
j � + �

i=1

a

kcg,yy
ij �xc

i − xg
j � �

+ �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm
 �− zji1m sin �̂ilm + z̄ ji1m cos �̂ilm�sin �g

jilm

− �− zji1m sin �̂ilm + z̄ ji1m cos �̂ilm�cos �g
jilm� = 0 j = 1,2, . . . ,b �41�

y use of �19�, �20�, �21�, and assumption 4, only 2b equations of the 4b equations in �40� and �41� are independent. Satisfaction of �40�
mplies satisfaction of �41�, so �40� and �41� and can be represented by �40� alone.

Finally �27� and �28� are substituted into �10� and expanded using the matrix definitions in Appendix B. For notational convenience,
ilm ¯ ilm
wo new variables L and L are introduced to describe the result
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Lilm = �
n=1

di

Kp
ilmnqp

iln − �2Mp
ilmmqp

ilm + �Kcp
ilm�Tqc

i + �
j=1

b

�Kgp
jilm�Tqg

j = 0

L̄ilm = �
n=1

di

Kp
ilmnq̄p

iln − �2Mp
ilmmq̄p

ilm + �Kcp
ilm�Tq̄c

i + �
j=1

b

�Kgp
jilm�Tq̄g

j = 0

i = 1,2, . . . ,a, l = 1,2, . . . ci

m = 1,2, . . . ,di �42�

The following identity is observed

�Kcp
ilm�Tqc

i = cos �̂ilm�Kcp
i1m�Tqc

i + sin �̂ilm�Kcp
i1m�Tq̄c

i �43�

his is verified by expanding Kcp
ilm according to the definition in Appendix B, substituting �̂ilm=�ilm−�i1m, expanding sin�x+y� and

os�x+y�, and simplifying using sin2 x+cos2 x=1. This and a similar identity for �Kgp
ilm�T along with �11� and �31� allows �42� to be

ritten as

Lilm = �
n=1

di

Kp
i1mn�Cilmqp

i1n + Silmq̄p
i1n� − �2Mp

i1mn�Cilmqp
i1m + Silmq̄p

i1m� + �Kcp
i1m�T�Cilmqc

i + Silmq̄c
i � + �

j=1

b

�Kgp
ji1m�T�Cilmqg

j + Silmq̄g
j � = 0

L̄ilm = �
n=1

di

Kp
i1mn�− Silmqpt

i1n + Cilmq̄p
i1n� − �2Mp

i1mn�− Silmqp
i1m + Cilmq̄p

i1m� + �Kcp
i1m�T�− Silmqc

i + Cilmq̄c
i � + �

j=1

b

�Kgp
ji1m�T�− Silmqg

j + Cilmq̄g
j � = 0

i = 1,2, . . . ,a

l = 1,2, . . . ,ci

m = 1,2, . . . ,di

�44�

actoring out common terms yields

Lilm = CilmLi1m + SilmL̄i1m = cos �ilmLi1m + sin �ilmL̄i1m = 0

L̄ilm = − SilmLi1m + CilmL̄i1m = − sin �ilmLi1m + cos �ilmL̄i1m = 0

i = 1,2, . . . ,a

l = 1,2, . . . ,ci

m = 1,2, . . . ,di

�45�
This shows that Lilm and L̄ilm for l�1 can each be written as a

inear combination of Li1m and L̄i1m, and �45� represents, in gen-

ral, only 6�i=1
a di independent equations from Li1m=0 and L̄i1m

0. Thus, �34�, �40�, and �45� form a 2a+2b+6�i=1
a di degree of

reedom eigenvalue problem.
The eigenvector for this reduced order eigenvalue problem is

�xc
1 yc

1 xc
2 yc

2
¯ xc

a xc
a�xg

1 yg
1
¯ xg

b yg
b�qpt

11 qpt
21
¯ qpt

a1�q̄pt
11
¯ q̄pt

a1�T

here qpt
il is defined in �7�. From each eigenvector of this reduced

roblem, two eigenvectors of the full problem are generated ac-
ording to �30� and �31�. If q and q̄ in �27�–�31� are interchanged,
he eigenvectors of the full system �3� must remain the same �i.e.,
he choice of which vector is q and which is q̄ is arbitrary�. Thus,
ach eigenvalue of the reduced problem has multiplicity two �ex-
ept for special parameter combinations where two or more de-
enerate eigenvalue pairs happen to coincide�. For each degener-
te eigenvalue of the reduced problem, both reduced problem
igenvectors generate identical eigenvectors of the full problem.

Thus it has been shown that if all planet sets have three or more
lanet trains, then there are a+b+3�i=1

a di numerically different
ranslational natural frequencies, each with multiplicity two.

3.3 Planet Modes. By describing each planet train’s motion
s a scalar multiple of the arbitrarily chosen first planet train’s
otion, a candidate planet mode associated with planet set i is
ritten in the form

qi = �0 ¯ 0�0 ¯ 0�0 ¯ qps
i 0 ¯ 0�T �46�

qps
i = �w1qpt

i1 w2qpt
i1 w3qpt

i1
¯ wci

qpt
i1�T �47�

ith qpt
i1 defined in �7� and i� �1,2 , . . .a� denoting a particular
lanet set. Insertion of �46� and �47� into �8�–�10�, expansion us-
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ing matrix definitions from Appendix B, and use of �38� leads to

�
l=1

ci

Kc,pt
il wlqpt

i1 = �
l=1

ci

wl�
m=1

di

kp
i1m
− �p

i1m cos �ilm + �p
i1m sin �ilm

− �p
i1m sin �ilm − �p

i1m cos �ilm

− rc
i1m�p

i1m � = 0

�48�

�
l=1

ci

Kg,pt
jil wlqpt

i1 = �
l=1

ci

wl�
m=1

di

�gp
ji1mzji1m
 sin �g

jilm

− cos �g
jilm

− rg
j � = 0

j = 1,2, . . . ,b �49�

�Kpt
il − �2Mpt

il �wlqpt
i1 = 0, l = 1,2, . . . ,ci �50�

For non-trivial solutions �47�, wl�0 for at least one l
� �1,2 , . . . ,ci�. Using this and �11�, �50� simplifies to the same
eigenvalue problem for any such l. Namely

�Kpt
i1 − �2Mpt

i1�qpt
i1 = 0 �51�

This is the reduced order eigenvalue problem for the motion of a
single planet train. There are 3di eigensolutions of the reduced
problem �51�. The eigenvalues are distinct, in general, but they
could be degenerate for special parameter combinations.

It remains to determine the wl in �47� and satisfy �48� and �49�.
The first two equations in �48� represent forces that the planets
exert on the carrier for deflection in a given mode. At each planet,
the forces are represented in a local coordinate system �i.e., radial
and tangential directions�, resolved into the global x and y direc-
tions, and then summed. This can be simplified by resolving each
force into an intermediate coordinate system. The resultant forces

on the carrier in the x and y directions from the lth planet train are
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Fx
il = wl�

m=1

d

kp
i1m�− �p

i1m cos �ilm + �p
i1m sin �ilm�

Fy
il = wl�

m=1

d

kp
i1m�− �p

i1m sin �ilm − �p
i1m cos �ilm� �52�

hese forces resolved in the radial and tangential directions of the
arbitrarily chosen� first planet are

F�
il = Fx

il cos �il1 + Fy
il sin �il1

F�
il = − Fx

il sin �il1 + Fy
il cos �il1 �53�

ubstitution of �52� into �53� and simplification using trigonomet-
ic identities yields

F�
il = wl�

m=1

di

�− �p
i1mkp

i1m cos��ilm − �il1� + �p
i1mkp

i1m sin��ilm − �il1��

F�
il = wl�

m=1

di

�− �p
i1mkp

i1m sin��ilm − �il1� − �p
i1mkp

i1m cos��ilm − �il1��

�54�

he sums in �54� are the same for every l, thus F�
il=wlF�

i1 and

�
il =wlF�

i1 �where w1=1 without loss of generality�. Then, resolv-
ng these forces back into the x and y directions �i.e., inverting
53��, the first two equations in �48� are expressed as


F�
i1 − F�

i1

F�
i1 F�

i1 �
�
l=1

ci

wl cos �il1

�
l=1

ci

wl sin �il1 � = 0 �55�

The determinant �F�
i1�2+ �F�

i1�2 of the matrix in �55� is nonzero
nless the planet modal deflections �p

i1m and �p
i1m are such that

ach planet train exerts zero resultant force on the carrier �i.e.,

�
i1=F�

i1=0�. These modal deflections are determined by �51�,
owever, which involves the planet inertias, bearing stiffnesses,
nd mesh stiffnesses, so the deflections will not, in general, satisfy

�
i1=F�

i1=0, which are independent of �51� and do not involve
nertias or mesh stiffnesses. Thus the matrix is, in general, invert-
ble and the two sums in �55� each vanish.

The third equation in �48� represents the moment exerted on the
arrier by the planets. Satisfaction of this equation requires either

l=1
ci

wl=0 or �m=1
di

kp
i1mrc

i1m�p
i1m=0. The second of these is indepen-

ent of the 3di equations of �51� that determine the �p
i1m and so

ill not be satisfied, in general. Thus, �l=1
ci

wl=0. Therefore, in the
eneral case, three constraints on the wl have been obtained.

�
l=1

ci

wl sin �il1 = 0 �
l=1

ci

wl cos �il1 = 0 �
l=1

ci

wl = 0 �56�

similar procedure shows that �49� gives the same three
quations.

Ambarisha and Parker �9� proved that for a simple planetary
ear the number of independent solutions of �56� is exactly ci

3. Thus, planet modes exist only for planet sets with four or
ore planet trains. Wu and Parker �7� give the following ci−3

losed-form, independent solutions based on their consideration of
imple planetary gears.

wl = cos
�n + 1�2��l − 1�

, n = 1,2, . . . ,
ci − 3

�57�

ci �

2
�
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wl = sin
�n + 1�2��l − 1�

ci , n = 1,2, . . . , �ci − 3

2 � �58�

where the brackets in �57� and �58� denote the ceiling and floor
functions, respectively.

For each eigensolution of the reduced problem �51�, ci−3 inde-
pendent vibration modes of the full problem �3�, each having the
same natural frequency, are constructed from �46� and �47�, and
the ci−3 independent solutions of �56�. Thus, for each planet set
i=1,2 , . . . ,a there are 3�ci−3�di vibration modes of the form �46�
and �47�; these are grouped into 3di sets of degenerate modes,
where each set has an associated natural frequency of multiplicity
ci−3.

For special parameter combinations, it may happen that a rota-
tional mode or translational mode may have no motion of the
carrier�s� and central gears. These modes, however, should not be
considered as planet modes because the planet motions satisfy
�22� or �31� and not �47�, �57�, and �58�. For example, in the
system of Fig. 6 and Table 1, if the pressure angles of all of the
gear-planet meshes are changed to zero �i.e., 	g

jilm=0 for all
i , j , l ,m�, then there is a pair of modes with frequency 5811.5 Hz
that have no motion of the carriers or central gears. One mode in
this pair is a planet mode with planet motions governed by �47�,
�57�, and �58�, but the other should be considered a rotational
mode because its planet motions are governed by �22�.2

3.4 Final Calculations. The total number of modes in the
three mode types considered is 3�a+b+�i=1

a cidi�. This equals the
total number of degrees of freedom of the general compound plan-
etary gear system. Therefore, the above set of modes is complete,
and all modes can be classified as one of a rotational, transla-
tional, or planet mode.

3.5 Diametrically Opposed Planet Positions. In certain situ-
ations, assembly constraints cause the planet trains to be un-
equally spaced around the carrier. In the most general case, this
causes the rotational and translational modes to couple and lose
their distinctive properties �because �12�–�21� no longer hold�.
One special case of interest is the diametrically opposed case in
which pairs of planets trains are 180 deg apart. In other words, for

some i, ci
2, ci is even, and �i�l+ci/2�m=�+�ilm. This is common
in practice. Each pair may be arbitrarily spaced. ci=2 is allowed,
which is an exception to assumption 3. For ci=2, the terms
“equally spaced” and “diametrically opposed” are equivalent. The
properties of such a planet set follow the results for the diametri-
cally opposed case.

For this spacing, the vibration modes retain a structure that is
similar to the equally spaced case. Lin and Parker considered
diametrically opposed planets for a simple, single stage planetary
gears in �12�. Those results are now generalized to the compound
case.

Assume, without loss of generality, that planet set 1 has dia-
metrically opposed planet trains. Any other planet sets may be
either equally spaced or diametrically opposed. Consider the ef-
fect of this spacing on the simplifications involving planet posi-
tion angles �12�–�21�. Equations �12� and �17� still hold for all i
but the others do not. The proofs of the properties of the rotational
modes and planet modes do not involve �13�–�16� or �18�–�21�,
thus, the properties of these modes retain their properties in the
diametrically opposed case. The translational modes, however, do
depend on these equations and thus their properties are modified
for the diametrically opposed case. Specifically, translational
modes have distinct eigenvalues instead of multiplicity two.

2Some numerical solvers may return coupled eigenvectors for this example de-
generate pair. The results will not look like either planet modes or rotational modes.

They can be decoupled by an orthogonalization process.
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The candidate carrier and gear deflections for a translational
ode are

qc
i = �xc

i yc
i 0�T, i = 1,2, . . . ,a �59�

qg
j = �xg

j yg
j 0�T, j = 1,2, . . . ,b �60�

he candidate planet motions are linear combinations of the
lanet motions of the �arbitrarily chosen� first two planet trains,
hat is

qp
ilm = 
�p

ilm

�p
ilm

up
ilm � = f il
�p

i1m

�p
i1m

up
i1m � + gil
�p

i2m

�p
i2m

up
i2m � for all i,l,m

here f il and gil are independent of m� �1,2 , . . .di�. In terms of
lanet trains this is

qpt
il = f ilqpt

i1 + gilqpt
i2 for all i,l �61�

or planet sets with three or more planet trains, f il and gil are

efined as

Equation �62� is similar to the result given in �12�, but �63� is not given in �12�. Th
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f il = −
sin��ilm − �i2m�
sin��i2m − �i1m�

gil =
sin��ilm − �i1m�
sin��i2m − �i1m�

for all i such that ci 
 3 �62�

For planet sets with two planet trains3

f i1 = 1, f i2 = − 1, gi1 = gi2 = 0 for all i such that ci = 2

�63�

In both cases the following relations hold:

�
l=1

ci

f il = �
l=1

ci

gil = 0 for all i �64�

Start by substituting �59�–�61� into �8� and simplifying using

Assumption 1, which yields

�kcb,xx
i − �2mc

i �xc
i

�kcb,yy
i − �2mc

i �yc
i

0
� + 
�l=1

ci

�
m=1

di

kp
i1mxc

i + �
f=1,f�i

a

kc,xx
if �xc

i − xc
f� + �

j=1

b

kcg,xx
ij �xc

i − xg
j �

�
l=1

ci

�
m=1

di

kp
i1myc

i + �
f=1,f�i

a

kc,yy
if �yc

i − yc
f� + �

j=1

b

kcg,yy
ij �yc

i − yg
j �

�
l=1

ci

�
m=1

di

�− rc
i1mxc

i sin �ilm + rc
i1myc

i cos �ilm�
�

+ �
l=1

ci

�
m=1

di

kp
i1m
− �f il�p

i1m + gil�p
i2m�cos �ilm + �f il�p

i1m + gil�p
i2m�sin �ilm

− �f il�p
i1m + gil�p

i2m�sin �ilm − �f il�p
i1m + gil�p

i2m�cos �ilm

− rc
i1m�f il�p

i1m + gil�p
i2m�

� = 0, i = 1,2, . . . ,a �65�

implification using �12� and �64� and deletion of equations that are satisfied identically �the third equation� yields


�kcb,xx
i − �2mc

i �xc
i

�kcb,yy
i − �2mc

i �yc
i � + 
�

l=1

ci

�
m=1

di

kp
i1mxc

i + �
f=1,f�i

a

kc,xx
if �xc

i − xc
f� + �

j=1

b

kcg,xx
ij �xc

i − xg
j �

�
l=1

ci

�
m=1

di

kp
i1myc

i + �
f=1,f�i

a

kc,xx
if �yc

i − yc
f� + �

j=1

b

kcg,yy
ij �yc

i − yg
j � �

+ �
l=1

ci

�
m=1

di

kp
i1m
− �f il�p

i1m + gil�p
i2m�cos �ilm + �f il�p

i1m + gil�p
i2m�sin �ilm

− �f il�p
i1m + gil�p

i2m�sin �ilm − �f il�p
i1m + gil�p

i2m�cos �ilm � = 0, i = 1,2, . . . ,a �66�

Insertion of �59�–�61� into �9� and a similar reduction yields


�kgb,xx
j − �2mg

j �xg
j

�kgb,yy
j − �2mg

j �yg
j � + 
�

i=1

a

�
l=1

ci

�
m=1

di

�gp
ji1mxg

j sin2 �g
jilm + �

n=1,n�j

b

kg,xx
jn �xg

j − xg
n� + �

i=1

a

kcg,xx
ij �xg

j − xc
i �

�
i=1

a

�
l=1

ci

�
m=1

di

�gp
ji1myg

j cos2 �g
jilm + �

n=1,n�j

b

kg,xx
jn �yg

j − yg
n� + �

i=1

a

kcg,yy
ij �yg

j − yc
i � � + �

i=1

a

�
l=1

ci

�
m=1

di

�gp
ji1m
 z̃ jilm sin �g

jilm

− z̃ jilm cos �g
jilm �

= 0, j = 1,2, . . . ,b

z̃jilm = − � j�f il�p
i1m + gil�p

i2m�sin 	g
jilm + �f il�p

i1m + gil�p
i2m�cos 	g

jilm + � j�f ilup
i1m + gilup

i2m� �67�

3
 is is an omission in �12� that is corrected here.
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here the definition of z̃ jilm is introduced for convenience.
Finally, substitution of �59�–�61� into �10� gives

Nil = �Kpt
il − �2Mpt

il ��f ilqpt
i1 + gilqpt

i2� + �Kc,pt
il �T
xc

i

yc
i

0
�

+ �
j=1

b

�Kg,pt
jil �T
xg

j

yg
j

0
� = 0,

i = 1,2, . . . ,a

l = 1,2, . . . ,ci �68�

here Nil is introduced for convenience.
For all planet sets i the following identity holds:

�Kc,pt
il �T
xc

i

yc
i

0
� = f il�Kc,pt

i1 �T
xc
i

yc
i

0
� + gil�Kc,pt

i2 �T
xc
i

yc
i

0
� �69�

his is confirmed by expanding the matrix components on each
ide according to the definitions in Appendix B to yield

− xc
i cos �ilm − yc

i sin �ilm = − xc
i �f il cos �i1m + gil cos �i2m�

− yc
i �gil sin �i2m + f il sin �i1m�

xc
i sin �ilm − yc

i cos �ilm = xc
i �f il sin �i1m + gil sin �i2m�

− yc
i �gil cos �i2m + f il cos �i1m�

hese equations hold for any values of xc
i and yc

i if and only if

cos �ilm = f il cos �i1m + gil cos �i2m

sin �ilm = f il sin �i1m + gil sin �i2m �70�

ubstituting the definitions of f il and gil in �62� �or �63�, as appro-
riate� into �70� shows that it, and consequently �69�, is identically
atisfied. An identity similar to �69� can be shown for Kg,pt

il .
These two identities along with �11� allow �68� to be written as

Nil = �Kpt
i1 − �2Mpt

i1��f ilqpt
i1 + gilqpt

i2� + �f ilKc,pt
i1 + gilKc,pt

i2 �T
xc
i

yc
i

0
�

+ �
j=1

b

�f ilKg,pt
ji1 + gilKg,pt

ji2 �T
xg
i

yg
i

0
� = f ilNi1 + gilNi2

i = 1,2, . . . ,a

l = 1,2, . . . ,ci

ecause Nil for any l can be written in terms of Ni1 and Ni2, �68�
epresents exactly 6di linearly independent equations for all planet
ets such that ci
3, and 3di linearly independent equations for all
lanet sets such that ci=2.
Consequently, �66�–�68� form 2a+2b+6�i,ci
3di+3�i,ci=2di

inear, homogenous equations for the same number of unknowns
ith parameter �2. This is the reduced order eigenvalue problem

or the translational modes when one or more planet sets have
nly two planet trains. Thus it has been shown that if any one or
ore planet sets have diametrically opposed planet trains, even if

ll other planet sets have equally spaced planet trains, then there
re exactly 2a+2b+6�i,ci
3di+3�i,ci=2di translational modes of
he form �59�–�61�, each with an associated natural frequency that
s, in general, distinct.

3.6 Sensitivity to Relative Planet Set Orientation. Because
he above analysis places no restrictions on relative angular ori-
ntations between the planet sets of multi-stage gears, the derived
odal properties are the same for any relative orientations. The

uestion remains, however, whether or not the natural frequencies

nd vibration modes themselves, not just their properties, are af-
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fected by the relative planet set orientations. In the most general
multi-stage case, the eigensolutions vary with relative orientation,
but they do not for systems satisfiying assumptions 1–4. Each
vibration mode type is considered separately.

For rotational modes, expanding the reduced order eigenvalue
problem of �23�, �24�, and �26� using matrix definitions in Appen-
dix B shows that it does not explicitly or implicitly involve the
planet position angles. Therefore, rotational natural frequencies
and vibration modes do not change with relative planet set
orientations.

Planet modes are derived from the reduced order eigenvalue
problem �51� and the wl satisfying �57� and �58�. The reduced
problem eigenvectors qpt

i1 and the natural frequencies � do not
depend on the planet positions because Mpt

il and Kpt
il in �51� are

independent of the planet positions. Equations �57� and �58� show
that the wl do not depend on planet positions. Thus, the planet
natural frequencies and vibration modes are independent of rela-
tive planet set orientation. This is expected as the deflections are
confined to individual planet sets.

The translational modes are more difficult to consider analyti-
cally. The reduced order eigenvalue problems from �34�, �40�, and
�45� �for equally spaced planet trains� and, �66�–�68� �for dia-
metrically opposed planet trains� involve the planet position
angles explicitly in summations of functions of the planet posi-
tions that change for different planet positions. An eigensensitivity
analysis �as performed by Lin and Parker in �15�� would show the
sensitivities of the natural frequencies to planet positions. Such an
analysis is beyond the scope of this paper. On physical grounds,
however, it can be seen that the degenerate modes in the equally
spaced case are the result of the translational stiffness and inertia
being isotropic �i.e., independent of the direction of translational
motion�. After rotation of any carrier, this isotropic relationship
still holds. Thus, the natural frequencies and mode shapes are
independent of relative planet set orientation. For the diametri-
cally opposed case, however, the translational modes are not de-
generate. Thus, a change in the relative orientation of the planet
sets will change the natural frequencies and vibration modes.
These results have been verified in numerical examples.

4 Discussion
While the mathematical proof is of interest mainly to the aca-

demic researcher, the results are useful for both the practical gear-
box designer and the academic researcher. To a gearbox designer,
the prediction of natural frequencies allows resonance conditions
to be avoided when designing a planetary gear system. The clas-
sification of modes into various types and knowledge of the num-
ber of numerically different natural frequencies is also important
for avoiding resonant response, reducing excitation of particular
mode types, and understanding whether response in a particular
mode will generate torque �rotational modes�, force �translational
modes�, or neither �planet modes� to the structures supporting the
central gears �sun and ring�. In cases where design constraints
require operating tooth mesh frequencies to be near natural fre-
quencies, the use of planet mesh phasing can suppress resonant
response �9,14,18,19�. Understanding and application of planet
mesh phasing depends on the unique properties of planetary gear
free vibration as shown here. Future work on understanding the
various mode types may identify certain types of modes as having
more significant impact on noise, fatigue life, and other factors of
interest.

For research purposes, extension of the dynamic model of
simple planetary gears to the general compound case allows other
investigations of simple planetary gear vibration to be extended to
the compound case. Research on nonlinear response, parametric
excitation from fluctuating mesh stiffness, elastic ring deforma-
tion, etc. �e.g., �7,8,10,20–22�� can be carried out for general com-
pound planetary gears. These analyses benefit from understanding
the properties of the different mode types, particularly because

such analyses frequently adopt the assumption that only one or
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wo modes are present in the response �modal truncation�. In that
ase, one can examine the interactions between two modes of the
ame or different types. For example, is a combination parametric
nstability possible between a rotational and translational mode?

Summary and Conclusions
A dynamic model of compound, multi-stage planetary gears of

eneral description has been developed. The model has been used
o examine the free vibration of compound, multi-stage planetary
ears. For identical, equally spaced planet trains, the natural fre-
uencies and vibration modes of compound planetary gears have
ighly structured properties due to the system’s cyclic symmetry.
pecifically, all vibration modes can be classified into one of three

ypes: Rotational, translational, and planet modes. Rotational
odes with distinct natural frequencies have pure rotation of the

entral gears and all planet trains in a given planet set move iden-
ically. Pairs of translational modes with degenerate natural fre-
uencies have pure translation of the carriers and central gears,
nd motions of the planet trains in a pair of orthonormal vibration
odes can be found by a simple transformation of the first planet

rain’s motion. Planet modes have motion of the planets in one
lanet set only and no motion of any carriers or central gears; the
ultiplicity of their natural frequencies is dictated by the number

f planet trains in a planet set. Reduced order eigenvalue prob-
ems for each mode type are given explicitly.
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omenclature
a � number of carriers=number of planet

sets
b � number of central gears
ci � number of planet trains in planet set i
di � number of planets per train in planet set

i �number of planets must be the same
in all trains�

e � static transmission error, L
F�t� � externally applied force, F

I � mass moment of inertia, M-L2

kp
ilm � planet bearing stiffness of planet m in

planet train l in planet set i, F/L
kg,xx

jn , kg,yy
jn � shaft stiffness between gear j and gear

n, F/L
Kg,��

jn � shaft stiffness between gear j and gear
n, F-L/rad

kc,xx
ih , kc,yy

ih � shaft stiffness between carrier i and car-
rier h, F/L

Kc,��
ih � shaft stiffness between carrier i and car-

rier h, F-L/rad
kcg,xx

ij , kcg,yy
ij � shaft stiffness between carrier i and gear

j, F/L
Kcg,��

ij � shaft stiffness between carrier i and gear
j, F-L/rad

kpp,��
ilmn , kpp,��

ilmn � shaft stiffness between planet m and n
of planet set i planet train l, F/L

Kpp,uu
ilmn � shaft stiffness between planet m and n

of planet set i planet train l, F-L/rad
kcb,xx

i , kcb,yy
i � bearing stiffness between carrier i and

ground, F/L
Kcb,��

i � bearing stiffness between carrier i and
ground, F-L/rad

kgb,xx
j , kgb,yy

j � bearing stiffness between gear j and

ground, F/L
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Kgb,��
j � bearing stiffness between gear j and

ground, F-L/rad
m � mass, M
r � radius �base radius for gears, radius to

planet centers for carriers�, L
u � rotational coordinate, u=r�, L

x ,y � translational coordinate, L
	g

jilm � pressure angle at the mesh between gear
j and planet m of planet train l of planet
set i, rad

	p
ilmn � pressure angle at the mesh between

planet m and planet n of planet train l of
planet set i, rad

�ilmn � for meshed planets: angle from the posi-
tive � direction of planet m to a line
connecting planets m and n in planet
train l, planet set i. Undefined for
stepped planets. �ilmm=0, rad

�ilmn � �ilmn−	p
ilmn, rad

� � deflection of an elastic element �com-
pression positive�, L

�gp
jilm�t� � time varying mesh stiffness between

gear j and planet m of planet train l of
planet set i, F/L

�pp
ilmn�t� � time varying mesh stiffness between

planet m and planet n in planet train l of
planet set i, F/L

� j
� � 1 if gear j is a ring�internal gear�

−1 if gear j is a sun�external gear�
� � rotational coordinate, rad

�ilm�t� � angular position of planet m of planet
train l of planet set i, rad

�̂ilm � �ilm−�i1m, rad
�g

jilm
� �ilm+� j	g

jilm, rad

�̂g
jilm

� �g
jilm−�g

ji1m, rad

�t� � externally applied torque, F-L
�,� � planet radial and tangential coordinates,

L

Subscripts
b � bearing �to ground�
c � carrier
g � gear
m � mesh
p � planet

ps � planet set
pt � planet train

Superscripts
i � carrier or planet set
j � central gear �sun or ring�
l � planet train

m � planet
n, f � depends on context

Appendix A: Equations of Motion
Carriers:

mc
i ẍc

i + kcb,xx
i xc

i + �
l=1

ci

�
m=1

di

kp
ilm���

ilm cos �ilm�t� − ��
ilm sin �ilm�t��

+ �
b

kcg,xx
ij �xc

i − xg
j � + �

a

kc,xx
in �xc

i − xc
n� = Fc,xx

i �t�

j=1 n=1,n�i
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C
c

P

D

J

Down
mc
i ÿc

i + kcb,yy
i yc

i + �
l=1

ci

�
m=1

di

kp
ilm���

ilm sin �ilm�t� + ��
ilm cos �ilm�t��

+ �
j=1

b

kcg,yy
ij �yc

i − yg
j � + �

n=1,n�i

a

kc,yy
in �yc

i − yc
n� = Fc,yy

i �t�

Ic
i �̈c

i + Kcb,��
i �c

i + �
l=1

ci

�
m=1

di

rc
ilmkp

ilm��
ilm + �

j=1

b

Kcg,��
ij ��c

i − �g
j �

+ �
n=1,n�i

a

Kc,��
in ��c

i − �c
n� = 
c

i �t� �A1�

entral gears �suns and rings�. Same as �2�, repeated here for
ompleteness

mg
j ẍg

j + kgb,xx
j xg

j − �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�t��g

jilm sin �g
jilm�t� + �

i=1

a

kcg,xx
ij

��xg
j − xc

i � + �
n=1,n�j

b

kg,xx
jn �xg

j − xg
n� = Fg,xx

j �t�

mg
j ÿg

j + kgb,yy
j yg

j + �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�t��g

jilm cos �g
jilm�t� + �

i=1

a

kcg,yy
ij

��yg
j − yc

i � + �
n=1,n�j

b

kg,yy
jn �yg

j − yg
n� = Fg,yy

j �t�

Ig
j �̈g

j + Kgb,��
j �g

j + �
i=1

a

�
l=1

ci

�
m=1

di

�gp
jilm�t��g

jilmrg
j + �

i=1

a

Kcg,��
ij ��g

j − �c
i �

+ �
n=1,n�j

b

Kg,��
jn ��g

j − �g
n� = 
g

j �t� �A2�

lanets:

mp
ilm�̈p

ilm − kp
ilm��

ilm − �
j=1

b

�gp
jilm�t��g

jilm sin 	g
jilm

+ �
n=1

di

�− �pp
ilmn�t��p

ilmn sin �ilmn + kpp,��
ilmn ��p

ilm − �p
iln�� = 0

mp
ilm�̈p

ilm − kp
ilm��

ilm + �
j=1

b

�gp
jilm�t��g

jilm cos 	g
jilm

+ �
n=1

di

��pp
ilmn�t��p

ilmn cos �ilmn + kpp,��
ilmn ��p

ilm − �p
iln�� = 0

Ip
ilm

�rp
ilm�2 üp

ilm + �
j=1

b

�gp
jilm�t��g

jilm + �
n=1

di 
�pp
ilmn�t��p

ilmn + Kpp,uu
ilmn

�� up
ilm

�rp
ilm�2 −

up
iln

rp
ilmrp

iln�� = 0 �A3�

eflections of elastic elements �compression positive�

�g
jilm = yg

j cos �g
jilm�t� − xg

j sin �g
jilm�t� + rg

j �g
j + � j�p

ilm sin 	g
jilm

− �ilm cos 	 jilm − � juilm + ejilm�t� �A4�
p g p gp
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�p
ilmn = − �p

ilm sin �ilmn − �p
iln sin �ilnm + �p

ilm cos �ilmn + �p
ijn cos �ilnm

+ up
ilm + up

iln + epp
ilmn�t� �A5�

��
ilm = xc

i cos �ilm�t� + yc
i sin �ilm�t� − �p

ilm �A6�

��
ilm = − xc

i sin �ilm�t� + yc
i cos �ilm�t� + rc

ilm�c
i − �p

ilm �A7�

Appendix B: System Matrices
Many matrices have the same names as those in Lin and Parker

�4�. Identically named matrices are similar or, in some cases iden-
tical, to those in �4�. Additionally, the Kcp and Kgp matrices are
similar to the Kc2, Kr2, and Ks2 matrices in �4�.

x = �xc
1
¯ xc

a�xg
1
¯ xg

b�xps
1

¯ xps
a �T

xc
i = �xc

i yc
i �c

i �T xg
i = �xg

j yg
j �g

j �T xps
i = �xpt

i1
¯ xpt

ici
�T

xpt
il = �xp

il1
¯ xp

ildi
�T xp

ilm = ��p
ilm �p

ilm up
ilm�T

F�t� = �Fc
1�t� ¯ Fc

a�t� Fg
1�t� ¯ Fg

b�t� 0 ¯ 0�T

Fc
i �t� = �Fc,xx

i �t� Fc,yy
i �t� 
c

i �t��T

Fg
j �t� = �Fg,xx

j �t� Fg,yy
j �t� 
g

j �t��T

M = diag�Mc
1, ¯ Mc

a,Mg
1, ¯ Mg

b,Mps
1 , ¯ Mps

a �

Mc
i = diag�mc

i ,mc
i ,Ic

i � Mg
j = diag�mg

j ,mg
j ,Ig

j �

Mps
i = diag�Mpt

i1,Mpt
i2, ¯ Mpt

ici
�

Mpt
il = diag�Mp

il11,Mp
il22, ¯ Mp

ildidi
�

Mp
ilmm = diag�mp

ilm,mp
ilm,Ip

ilm/�rp
ilm�2�

K = Kb + Km

Kb = diag�Kcb
1 ,Kcb

2 , ¯ Kcb
a ,Kgb

1 , ¯ Kgb
b ,0 ¯ 0�

Kcb
i = diag�kcb,xx

i ,kcb,yy
i ,Kcb,��

i �

Kgb
j = diag�kgb,xx

j ,kgb,yy
j ,Kgb,��

j �

Km = 

Kc

11
¯ Kc

1a Kcg
11

¯ Kcg
1b Kc,ps

1

� ] ] � ] �

Kc
aa Kcg

a1
¯ Kcg

ab Kc,ps
a

Kg
11

¯ Kg
1b Kg,ps

11
¯ Kg,ps

1a

� ] ] � ]

Kg
bb Kg,ps

b1
¯ Kg,ps

ba

Kps
1

�

symmetric Kps
a

�
Kc

in = 	�l=1

ci

�
m=1

di

Kc1
ilm − �

f=1,f�i

a

Kc4
if − �

j=1

b

Kcg
ij , if i = n

Kc4
in , otherwise

�
Kc1

ilm = kp
ilm
 1 0 − rc

ilm sin �ilm

1 rc
ilm cos �ilm

symmetric �rilm�2 �

c
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1

Down
Kc4
in = − diag�kc,xx

in ,kc,yy
in ,Kc,��

in �

Kcg
ij = − diag�kcg,xx

ij ,kcg,yy
ij ,Kcg,��

ij �

Kc,ps
i = �Kc,pt

i1 Kc,pt
i2

¯ Kc,pt
ici

�

Kc,pt
il = �Kcp

il1 Kcp
il2

¯ Kcp
ildi

�

Kcp
ilm = kp

ilm
− cos �ilm sin �ilm 0

− sin �ilm − cos �ilm 0

0 − rc
ilm 0

�
Kg

jn = 	�i=1

a

�
l=1

ci

�
m=1

di

Kg1
ilmn − �

f=1,f�j

b

Kg4
f j − �

i=1

a

�Kcg
ij �T if j = n

Kg4
jn , otherwise

�
Kg1

jilm = �gp
jilm�t�
 sin2 �g

jilm − cos �g
jilm sin �g

jilm − rg
j sin �g

jilm

cos2 �g
jilm rg

j cos �g
jilm

symmetric �rg
j �2 �

Kg4
in = − diag�kg,xx

in ,kg,yy
in ,Kg,��

in �

Kg,ps
ji = �Kg,pt

ji1 Kg,pt
ji2

¯ Kg,pt
jici

�

Kg,pt
jil = �Kgp

jil1 Kgp
jil2

¯ Kgp
jildi

�

Kgp
jilm = �gp

jilm�t�

� 
− � j sin �g
jilm sin 	g

jilm sin �g
jilm cos 	g

jilm � j sin �g
jilm

� j cos �g
jilm sin 	g

jilm − cos �g
jilm cos 	g

jilm − � j cos �g
jilm

rg
j � j sin 	g

jilm − rg
j cos 	g

jilm − rg
j � j �

Kps
i = diag�Kpt

i1,Kpt
i2
¯ ,Kpt

ici
�

Kpt
il = 
Kp

il11
¯ Kp

il1di

] � ]

Kp
ildi1

¯ Kp
ildidi �

Kp
ilmn = 	Kc3

ilm + �
j=1

b

Kg3
jilm + �

f=1,f�m

di

Kp4
ilmf if m = n

Kp5
ilmn, otherwise

�
Kc3

ilm = diag�kp
ilm,kp

ilm,0�

Kg3
jilm = �gp

jilm�t�
 sin2 	g
jilm − � j cos 	g

jilm sin 	g
jilm − sin 	g

jilm

cos2 	g
jilm � j cos 	g

jilm

symmetric 1
�

Kp4
ilmn = �pp

ilmn�t�
sin2 �ilmn − cos �ilmn sin �ilmn − sin �ilmn

cos2 �ilmn cos �ilmn

sym 1
�

+ diag�kpp,��
ilmn ,kpp,��

ilmn ,
Kpp,uu

ilmn

rp
ilmrp

iln�
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Kp5
ilmn = �pp

ilmn�t�

�
 sin �ilmn sin �ilnm − sin �ilmn cos �ilnm − sin �ilmn

− cos �ilmn sin �ilnm cos �ilmn cos �ilnm cos �ilmn

− sin �ilnm cos �ilnm 1
�

− diag�kpp,��
ilmn ,kpp,��

ilmn ,
Kpp,uu

ilmn

rp
ilmrp

iln�
Note that if �pp

ilmn�t��0 then kpp,��
ilmn =0,kpp,��

ilmn =0,Kpp,uu
ilmn =0. If

kpp,��
ilmn �0, kpp,��

ilmn �0, or Kpp,uu
ilmn �0 then �pp

ilmn�t�=0. This is because
two planets cannot be meshed with each other and shaft connected
with each other �i.e., stepped� at the same time.
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