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Gear Systems

This paper extends previous analytical models of simple, single-stage planetary gears to
compound, multi-stage planetary gears. This model is then used to investigate the struc-
tured vibration mode and natural frequency properties of compound planetary gears of

general description, including those with equally spaced planets and diametrically op-
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posed planet pairs. The well-defined cyclic structure of simple, single-stage planetary
gears is shown to be preserved in compound, multi-stage planetary gears. The vibration
modes are classified into rotational, translational, and planet modes and the unique

properties of each type are examined and proved for general compound planetary gears.
All vibration modes fall into one of these three categories. For most cases, both the
properties of the modes and the modes themselves are shown to be insensitive to relative
planet positions between stages of a multi-stage system. [DOI: 10.1115/1.2345680]

1 Introduction

Planetary gears are widely used in many applications due to
advantages over parallel shaft arrangements such as high power
density and large reduction in a small volume [1]. In fixed-ratio
applications requiring a reduction of approximately 10:1 or less, a
simple (i.e., single planet for each load path), single-stage plan-
etary gear is often sufficient. For fixed-ratio applications requiring
greater reductions, however, compound planetary gears are com-
mon [2]. Automatic transmissions require more kinematic combi-
nations than a single planetary can provide, so they also utilize
compound planetary gears. Despite their benefits, Kahraman [3]
notes that compound planetary gears often have more noise and
vibration problems than simple planetary gears.

Although the vibration of simple, single-stage planetary gears
has been studied by many researchers (e.g., [4-16]), the vibration
of compound or multi-stage planetary gearsets has received little
research attention. To the authors’ knowledge, Kahraman [3] con-
ducted the only analytical study of the vibration of compound
planetary gears. In that work, a purely rotational model that does
not include gear translation is applied to a restricted class of com-
pound planetary gears, and modal properties are given based on
simulation rather than derivation.

For simple, single-stage planetaries, Lin and Parker [4] ana-
lyzed the free vibration and proved that there are exactly three
types of modes: Rotational, translational, and planet. They showed
certain unique properties for these modes. These findings are con-
sistent with finite element results [8]. Recent industry-motivated
analyses by the authors investigated a variety of compound and
multi-stage planetary gearsets and found that they all exhibited
modal characteristics similar to a simple, single-stage planetary
gear. The intent of this work is to generalize prior results and
mathematically prove that compound, multi-stage planetary gear
systems of general description possess highly structured modal
properties analogous to simple, single-stage planetary gears. This
work includes all of the cases considered in Kahraman’s model
[3]. 1t expands on that work by allowing an infinite number of
kinematic combinations instead of a limited number, including
translational degrees of freedom in addition to rotations, and pro-
viding analytical proof of the modal properties in addition to nu-
merical verification.
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2 Modeling and Equations of Motion

There are many different kinds of gear sets that are referred to
as compound planetary gears. The present work attempts to be as
general as possible in its definition. Three different types of com-
pound planetary gears are described. The first two are the stepped
planer planetary (Fig. 1), and the meshed planet planetary (Fig. 2)
[17]. The third type, the multi-stage planetary, (Fig. 3) is created
by joining multiple planetary stages together, where each stage
can be a simple, meshed, or stepped planetary. No limitations are
imposed on which elements are the input or output members.

In deriving the equations of motion, it is necessary to system-
atically enumerate the three types of elements in a planetary gear:
Carriers, central gears (suns and rings), and planets. Let the car-
riers be numbered 1,2,...,a and the central gears be numbered
1,2,...,b. In order to describe the planets, it is convenient to
divide them into groups.

First, each planet is always associated with one and only one
carrier. Thus, it is natural to define a planet set to be all of the
planets associated with a particular carrier. Within each planet set,
the planets are partitioned into isolated planet trains. Two planets
are considered to be in the same planet train if they: (a) Mesh with
each other, or (b) are connected to each other by a shaft (as in
stepped planets). The planet train concept is illustrated in Figs. 1
and 2.

Let the planet sets be numbered 1,2, ...,a, where planet set i is
associated with carrier i. Let the planet trains be numbered
1,2,...,c', where ¢ designates the number of planet trains in
planet set i. Let the planets in a train be numbered 1,2,...,d,
where d' designates the number of planets per planet train in
planet set i. The model requires all planet trains in a planet set to
have the same number of planets, which is generally the case in
practical systems.

2.1 Coordinates and Geometric Description. A planar prob-
lem is considered where each carrier, planet, and central gear has
three degrees of freedom: Two translational and one rotational.
This limits the analysis to spur gears. In total, the model has
3(a+b+3% c'd) degrees of freedom.

The choice of a coordinate basis for the multi-stage case pre-
sents some options. For single stage planetaries, Lin and Parker
[4] chose a basis that rotates with the carrier. This allows the
planet positions to be described by fixed angles even with gear
rotation. In the present case, there are potentially several different
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Fig. 1 Example of a stepped planet compound planetary gear

carriers, each rotating at different speeds. It is possible to con-
struct multiple rotating bases and then describe the coupling be-
tween the rotating components by means of time-varying coordi-
nate transformations. Another possibility is to describe all
components in a single fixed basis and then allow the planet po-
sition angles to change with time. Either choice leads to a time-
varying stiffness matrix under operating conditions. For the
present work considering free vibration, the second choice is more
convenient.

Using a fixed basis, translational coordinates x', y!. are assigned
to the carriers and translational coordinates X/, yi are assigned to
the central gears (suns and rings). The x| and xg, coordinates are
chosen to be positive towards the equilibrium position of the ar-
bitrarily chosen first planet of the first planet train of the first
planet set at time r=0. Translational coordinates §;)l’", 77}',,’”’ are
assigned to planet m in planet train / in planet set i. These are
radial and tangential coordinates, respectively (Fig. 4). The origin
of the (gm, 1];1'” coordinates is fixed at each planet’s equilibrium
positiqn and does not translate with carrier vibration, that is, ;,l’"
and 7];}['” are absolute (not relative) deflections.

These coordinates illustrate conventions that are followed
throughout this paper. For all variables, subscripts denote labels
and superscripts denote indices. Indices denoting the gear and
carrier (if any) always precede indices for the planet set, planet
train, and planet (if any). Indices denoting the planet set, planet
train, and planet are always in that order. Not all of these indices
will be present for every variable. In general, i is used for denot-
ing carriers and planet sets, j for central gears, [ for planet trains,
and m for planets. Some expressions require more than one of a

Fig. 2 Example of a meshed planet compound planetary gear
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Fig. 3 Example of a multi-stage compound planetary gear

particular component type (e.g., two central gears). In that case an
additional index (either n or f) will be used for the second com-
ponent. Which component the second index represents can be de-
termined from context. For example, in m'™, the indices are planet
set, planet train, and planet while in k{g’,’xx the indices are both
gears.

In [4], all rotational coordinates are chosen to be u=r6, where r
is the base radius for gears and the radius from the carrier center
to the planet center for carriers. In the present work, this form
cannot be used for the carrier because the meshed planet case has
planets at multiple radii (e.g., Fig. 2). Thus, the carrier rotational
coordinate must be 6. It is then more convenient to use 6 instead
of u for central gears as well. Due to this difference, the matrices
K., Kgi. K, and K, given in Appendix C differ from the
corresponding matrices in [4]. For the planets, the choice is arbi-
trary. u is used because it simplifies the notation. Therefore, cor-
responding planet matrices are the same as in [4].

The circumferential planet locations are specified by the time-
varying (under operating conditions) angles /"(z), where
'11(0)=0. To describe the orientation of meshed planets with
respect to each other, the angle 87" is introduced. This angle is
measured counterclockwise from the positive { direction of planet
m to a line connecting the centers of planets m and n (both planets
are in planet set i, planet train /). This is illustrated in Fig. 4,
where both B and B are shown.

2.2 Equations of Motion. The equations of motion are simi-
lar to [4] except there are more elements and they can be coupled
in additional ways. Gyroscopic effects are neglected. The equa-

Fig. 4 A planet-planet mesh modeled by a linear spring and
static transmission error
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Fig. 5 A sun-planet mesh modeled by a linear spring and
static transmission error

tions of motion of a central gear are derived as an example. The
forces/moments on a central gear fall into five categories: Gear-
gear forces/moments, gear-carrier forces/moments, gear-ground
bearing forces/moments, gear-planet mesh forces, and externally
applied forces/moments. The first three are easily described. Mod-
eling the interaction as a linear spring, such as from a connecting
shaft, the gear-gear force between gears j and n in the x direction
is described by k’ (x’ x,). Similar terms occur for the y and ¢
coordinates as well as the gear-carrier and gear-ground forces/
moments. Note that central gears never mesh with other central
gears.

Gear-planet mesh forces are more complicated to describe. The
gear-planet mesh between gear j and planet m of planet train /,
planet set i is shown in Fig. 5. This is nearly identical to Fig. 2 in
[4], except that all elements are enumerated with additional sub-
scripts and superscripts. For clarity, « indicates a tooth mesh stift-
ness, K indicates a torsional shaft stiffness, and k indicates a trans-
lational bearing or shaft stiffness. Although a sun is shown in Fig.
5, the situation for a ring is similar. The equations for a ring and a
sun differ only in the sign of a few terms. In order to generalize
these equations, the variable ¢/ is introduced as

; 1 if gear j is a ring (internal gear)
o =
—1 if gear j is a sun (external gear)
In order to represent the changing number of teeth in contact,
the gear-planet mesh is modeled as a time-varying mesh stiffness
Kgll,’"(t). The deflection of the tooth mesh is

S = v cos Y"™(1) = x4 sin (1) + 11 61+ oI sin @

_ 7];)/111 cos a[/;lm zlm+enlm(t)

lﬁglm(l‘) — lﬂllm(l‘) + (Tjai;il”l (1)
where agl”’ is the pressure angle of the mesh, and egz’”(z) is the
time-varying, unloaded static transmission error (compression is
positive), which can be used to model excitation due to profile
modifications and manufacturing errors.

Denoting externally applied forces and torques by Fl, 7j, re-
spectively, and mass and mass moment of inertia by IJ g, re-
spectively, the equations of motion for gear j are
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-3 3 2 (3" sin " (1) + Z LA

i=1 =1 m=1

X (x] —x0) + 2 K (]t = F, (1)
n=l.n#j
a o d

mjgyzls’ + k';b,,vyyi’ + 2 E E 'd;lm(t) 8" cos Wllm(t) + E kcg ¥y

i=1 =1 m=1

X(v] - yi) + E k" (vl =y =

n=1,n#j

Fi(0)

dt

Iééé + Kéb,se‘% + 2 2 2 '<§”"(t)5’”"’ﬂ + 2 th 09(92 - 6,)

i=1 =1 m=1 i=1

+ 2 aa( - 0) = 7}{7(’) (2

n=1,n#j

where all symbols are defined in the Nomenclature section.

The equations of motion for the planets (see Fig. 4) and the
carriers are similarly obtained. These are given in Appendix A.
For notational convenience, the bearings between the planets and
the carriers are assumed to be isotropic (i.e., have the same stiff-
ness in all directions).

The equations of motion for the system are written in matrix
form as

Mx(1) + [K;, + K,,(1) ]x(1) = F (1) 3)

where M is the positive definite mass matrix, K, is the diagonal
bearing stiffness matrix, K,,(¢) is the symmetric stiffness matrix
from coupling between elements (both tooth meshes and shaft
couplings), and F(t) is the vector of applied forces and torques.
The vector x and matrix components are given in Appendix B.

3 Natural Frequencies and Vibration Modes

To determine the natural frequencies and vibration modes the
time-invariant system is considered. All mesh stiffnesses are con-
sidered to be constant and equal to their average stiffness over one
mesh cycle. The planet position angles //(t) are fixed at their
values for some arbitrary time. All externally applied forces/
moments are assumed to be zero.

The associated eigenvalue problem derived from x(¢)=qe

o’Mq=(K,+K,)q (4)

lm[

a=[a} - q’la} - dlla), - qi]" (5)
The individual vectors for the carriers and gears are
a.=0dyl 61, a=[x, ¥ 6] (6)
The planet set, planet train, and planet vectors are
a=la} - d5T. ql=[q" -+ "7,
1 il ln ilmT
lm [gl n I n Ip ‘I] (7)

Expanding (4) into three groups of equations for the individual
components according to the matrix definitions in Appendix B
yields

a
f=1

+ E K(‘gqg + KL psqps 0
i=1,2,....a ()
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Table 1 Parameters of example system in Fig. 6

Number of Carriers a=2
Number of Gears =3
Number of Planet Trains c'=4,F°=5
Number of Planets per Train d'=3d =1
Pressure Angles alm= ar,{“"‘ =25°
27[(1 -1 .
o)==, w“Z(O) =y 0) =y"0)+32,
Planet Location
y/zll(o) 2”(1 ﬂmz 70],ﬁ”21 —218
= 5><108 ifi=llm=Ln=2o0ri=lm=2,n=1
” 0 otherwise

x10° ifi=1li= =1
Mesh Stiffnesses (N/m) %10 iLy=Li=Lm
jilm __

5%10° ifj=2,i=1,m=3
# |5x10* ifi=2and (j=2o0rj=3)

0 otherwise
Translational Bearing Stiffnesses (N/m) |k}, ,, = ki, ,, =1x10°, k}, . =k}, ~=1x10°, k)" =1x10°

Torsional Reaction Stiffnesses (N-m/rad) K., 5 =0, Ky g0 = K} o0 =05 K aboo =X 10
kKl =kl =0,k7, =k7, =0,

8., XX 8,y
8 o1 oi_
P _{SXIO ifi=1,j=3

cgxx T egyy T

Translation Coupling Stiffness (N/m) 0 otherwise

pp.S¢ = “ppomm

T 1x10° ifi=l,m=2,n=3ori=l,m=3,n=2
0 otherwise

) ) 2x10% ifi=1,j=3
K;tloe:OvK:lm_O K;Jgaa { m /

0 otherwise
'Torsional Coupling Stiffness (N-m/rad)

e 1x10" ifi=l,m=2,n=3ori=l,m=3,n=2
e ) otherwise
m —m —lm =5, m'“ :, =m:,“=0.75
Mass (kg) > m =10
m, =zm. =

I,=I=00512=05,,=10,I’ =12
I =1 =00L1,"=0.09,7)" =02
i =r) =100,r; =300,r," =60,r,” =77.7,1," =55.8

8

Mass Moment of Inertia (kg-m?)

rach {mm) r 100 " =176.5,r" = r'® =270,r =220.7
Gear Types o' =0’ =-1 (external, sun) ,6” =1 (internal, ring)
b These assumptions lead to a cyclically symmetric structure with
(Ki; b szé )qé + E K/" ot 2 (K’/ E Kf’psqps distinctive vibration prf)perties. These prgperties are ﬁrst illus-
n=1 trated by an example using the parameters in Table 1. This system
is shown schematically in Fig. 6. It is a two stage system where
j=12,....b (9)  the first stage has both meshed and stepped planets and the second
stage has only simple planets. The ring gear is common to both
i Nl i .
(K}, - 0®M))q, + (KL, )Tq E (K )Tql=0 i=1.2,....a
(10) I =gtiiiisllii}
I 1
The following additional assumptions are imposed: { ! Gear2
LT T
(1) All planet trains within a planet set are identical in all ways I g:ggg getl ] g}ggg getl H
(mass, tooth parameters, bearing properties, etc.); I | Carrier2
(2) All planet trains are equally spaced around their associated [ ' Planet Set 2
carrier. The case with diametrically opposed pairs of planet { : Planet 1
trains is discussed later; [ Planet Set 1 I
(3) For each planet set there are three or more planet trains Lﬂaf”__ _____ ]
(¢'=3). In practice, almost all planetary gears have three or
more planets to take advantage of load sharing. The case Geart ares Y
with two equally spaced planet trains is considered later as e amer Gear3
a case of diametrically opposed planet trains;
(4) All bearing and shaft stiffnesses are isotropic. Fig. 6 Example system
4 |/ Vol. 129, FEBRUARY 2007 Transactions of the ASME
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Table 2 Natural frequencies and their multiplicities m for the
example system. Rotational, translational, and planet modes
are distinguished by R, T, and P, respectively.

Natural Frequency (Hz)
m=1 m=2
0.0R 4422 T
660.9 P 7713 T
932.0 R 1029.5 P
1011.2 R 14365 T
12614 R 1856.2 T
1557.1 R 22502 T
23822 P 34992 T
3379.0 R 3890.2 P
3796.3 R 44912 T
4849.2 R 48029 P
58115 P 5503.2 T
5860.6 R 55534 T
59911 P 59364 T
6019.5 R 61413 T
6247.8 P 77963 T
6597.2 R 8360.2 T
6981.1 R 88124 T
7180.6 P 91174 T
7767.1 R 100839 T
8339.6 P 110716 T
8564.8 R
10082.7 P
10085.6 R
10982.1 R
11054.3 P
11092.6 R

stages. The system has 66 degrees of freedom. The natural fre-
quencies and their multiplicities are shown in Table 2.

All vibration modes for this system can be classified into one of
three types. Typical vibration modes of each type are shown in
Figs. 7-9. The equilibrium positions of the gears and carriers are
shown as dashed lines. The equilibrium positions of the planets
with respect to the displaced carriers are shown as light lines. The
displaced positions of the suns and planets are shown as heavy
lines. Dots represent the component centers. Motion of the ring is
omitted for clarity.

Figure 7 illustrates a type of mode where all central gears and
carriers have pure rotation and no translation. These are named
rotational modes. In a rotational mode, all planet trains within a
given planet set have identical motion. There are exactly a+b
+32% ,d'=17 rotational modes, each with an associated natural
frequency of multiplicity one (distinct).

Figure 8 shows a pair of degenerate modes that have the same
natural frequency. All central gears and carriers have pure trans-
lational motion with no rotation. These are called translational
modes. There are exactly a+b+32?:1di= 17 degenerate pairs of
translational modes, where each pair has an associated natural
frequency of multiplicity two. Well-defined relations between the
planet motions will be shown.

Figure 9 illustrates two modes where the carriers and central
gears have no motion; the planets are the only components that
deflect. These are called planet modes. A given mode is associated
with motion of the planets of exactly one planet set and planets in

Journal of Vibration and Acoustics

Fig. 7 Typical rotational mode for example system of Fig. 6
and Table 1, ®=932.0 Hz

all other planet sets have no motion. In general, each natural fre-
quency associated with planet set i has multiplicity ¢/~3. Thus,
planet modes exist only for planet sets containing four or more
planet trains. If planet modes exist for planet set 7, then there are
3d' different natural frequencies for that set’s planet modes (each
with multiplicity ¢/-3). So, there are exactly 33¢,(c'~3)d'=15
planet modes. The number of different natural frequencies for a
planet set’s planet modes is dictated by the number of degrees of
freedom in one planet train; their multiplicity is dictated by the
number of trains in the set. Finally, each planet train’s motions are
a scalar multiple of the first (or any arbitrarily chosen) planet
train’s motions. Equations governing these scalars will be derived.
The above properties of the modes, which have been drawn
from numerical results, are now proven analytically. The proof
proceeds by proposing candidate modes based on the numerical
results and substituting them into the equations of motion. For
each type of mode, a reduced degree of freedom eigenvalue prob-
lem is found. The total number of eigenvalues is shown to equal
the total number of degrees of freedom in the system, so the three
mode types are an exhaustive list of the possible mode types.
The equations of motion contain many sums over the planets
and planet trains, and many of these can be simplified with the
numbered assumptions noted above. Assumption 1 leads directly
to the simplifications
M), =M,

il _ yeil
pt> Kpt - Kpt

for all i,/ (11)
Assumption 2 is stated formally as /(D" =27/ci+ /™ for all
i,l,m. Together with assumption 3, this implies the relations

o o

2 sin /™ =0, 2 cos " =0

=1 =1

(12)

o

E cos ¢/ sin /" =0

=1

(13)

FEBRUARY 2007, Vol. 129 / 5
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Fig. 8 A pair of typical translational modes for example sys-
tem of Fig. 6 and Table 1, ®=3499.2 Hz

o o

2 cos lz/'lm sin lz/'lm —_ 2 cos l?/'lm sin lzfilm (14)
=1 =1
2 cos? ¢ = 2 sin? g/ (15)
=1 =1

6 / Vol. 129, FEBRUARY 2007

Fig. 9 Two typical planet modes for the example system of
Fig. 6 and Table 1. (a) A mode in which stage 1 planets have
motion and stage 2 has no motion, ®=2382.2 Hz (b) A mode in
which stage 1 has no motion and stage 2 planets have motion,
®»=3890.2 Hz.

i
¢

(,i
2 cos Wlm cos lelm — E sin lﬁ”m sin lelm
=1

=1

(16)

where #im=yim— yilm so that ¢#1"=0 for all i,l,m.

Transactions of the ASME
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Because Assumption 1 implies a”l’"—aglm for all I, (12)—(16)
also hold if /" is replaced with W’["’, where W’["’ Y
+<rfa”1’" Specifically,

o o

> sin P =0 > cos Y"=0 (17)
I=1 I=1
> cos Y sin )" = (18)
I=1
ci Fi
jilm % jilm _ Gjitm i jilm
E cos ;" sin ¢/ ——2 cos /""" sin (19)
=1 =1
i i
> cos? Y= > sin? y (20)
I=1 I=1
ri Ci
E cos wglm cos lzfilm — 2 sin %{ilm sin l:bfilm (21)

=1 =1

where (zlglmz l!éilm_ lr/éilm.
3.1 Rotational Modes. A candidate rotational mode of the
form (5)—(7) is given by

q.=[00 4] q,=[00 6]

=1,2,...,a

22
j=12,....b @2)

qps = [qpt qpt : qpt]T

This candidate mode must satisfy the eigenvalue problem of
(8)—(10). Insertion of (22) into (8) and use of (12) and Assumption
1 yields a equations (the other 2a equations are identically satis-
fied) that simplify to

d' a
Kib,ﬁﬂei - wzliﬁi + Ciz (r?m)zk;lmei + E K’fea(el 5f)
m=1 f=Lf#i
di
E v 90(01 01) —c 2 rtlmktlm tlm =0
m=1
i=1,2,...,a (23)

Insertion of (22) into (9) and use of (17) and Assumption 1 yields
b equations

w1’6"+2 K 06— 6) + E K" 6 61)

n=ln#j

gb 96

llm cos a}llm

j N jilm ilm jilm _
+ﬂg§‘,c§‘,KJg (r6,+ o’{)" sin o

=l m=1

o)™ =0, j=12,....b (24)

Insertion of (22) into (10) and use of (11) yields

Journal of Vibration and Acoustics

Kéalt . Mgt . q?f
K| i
Ki! M q!
pt L pt pt
(K )7 e
i2 i2\T
(K. "’) 0[+> (Kg’”’) 0 =0
ol (L
. f4
(chcpt T (ng;n))T
i=1,2,...,a
=12 (25)

By Assumption 1, the product in the next to last term in (25) is
the same for every planet train, that is, the following product is
independent of / for arbitrary i:

0
K!,)1N0 |=[0-r"600-r"2600
¢

C
— 714" ¢ 017 for all 7,1

A similar result holds for the last term in (25). Thus, for each i,
(25) consists of ¢ sets of identical equations and thus can be
represented by the single independent set for the first planet train.
Specifically,

K;}” K;}llz K;‘)ud"
i121 i122 :
ild'1 ild'd
Kp KP
M;lll q:,“ (Kill)T
o mT 0 |, | &
ild'd’ ild' ild'
M, q, (Kq, )"
(Kjill)T
0 b ; 0
(Kg,;z)f o
x[ 0 [+ 0 =0, i=1,2,....a (26)
. = : )
¢ (Kjild")T 0{3

Equations (23), (24), and (26) consist of a+b+32%,d' linear,
homogenous equations for a+b+32 ' ,d" unknowns and the pa-
rameter w”. Thus (23), (24), and (26) constitute a reduced degree
of freedom eigenvalue problem yielding a+b+32{_,d' natural fre-
quencies and rotational modes. From the solutions of the reduced
eigenvalue problem, rotational vibration modes of the full system
are constructed according to (22). In the general case these eigen-
values are distinct. In certain cases, however, parameters may be
such that two or more eigenvalues coincide. For example, con-
sider the example presented in the last section (Fig. 6 and Table 1)
but allow the ring gear to spin freely (i.e., k> 2b.0o=0). In this case,
there are two different rotational rigid body modes (w=0).

3.2 Translational Modes. A candidate pair of translational
modes of the form (5)—(7) with degenerate natural frequency w is
given by

a=[q! - qla; - gy, - qi]" 27)
a=[a; - qla, - qla, - " (28)
(the overbar does not denote complex conjugate). These are or-
thogonal with respect to the mass matrix such that g"Mq=0. The
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carrier, gear, and planet translations are related by1 (kL b w2mi)xi

(kcb LYy wzmlr)ylc

q. =[xy 0", gi=[y, -x.0] (29) 0
C[ dx
- J T _j= J _ T Ezkllmxl+ E knxx(x _'Xf)+2ka xx —.X‘])
[x, v, 01", @=Ly, —x, 0] (30) — = 2 8
dod
qzplm itm  gilm q;:m + 2 2 klplm i E kl V‘(yi. )+ E kng y}(yi _yi’)
—ilm |~ Silm Cilm —ilm (31) =1 m=1 f=1f#i
q, - 4ap dod
. ) o ilm_i Im ilm_ i Im
where S7"=1 sin /' Ci"=1 cos /' and I is the 3 X 3 identity g Z'l e X sin Ty cos YY)
matrix. It remains to show that this candidate mode pair satisfies - -
(8)-(10).
Substitution of (27) into (8) yields a equations that simplify to + 2 K’l ptqpt i=1,2,...,a (32)

'Note the sign differences between (30) and the corresponding equation in Lin . . . .
and Parker’s derivation [4]. This is a typographical error in [4] that is corrected in The last term in (32), which represents the planet trains, is ex-

this paper. panded using (31) and the matrix definitions in Appendix B as

o dod dod

2 Kllptqpt 2 E Kllm tlm 2 2 Kllm(qtlm cos l//lm —llm sin l’i/lm)

=1 =1 m=1 =1 m=1

i od (g“’l’" cos v,[/lm + {’1”’ sin z,[/l"‘)cos Y (77’1'” cos 1//"” _’1”' sin 12/lm)sin ym
— 2 E kzm (é«tlm cos Wlm + gllm sin 1//"")sm l//lm (nilm cos Wlm —tlm sin lzjlm)COS l//‘lm (33)
=1 m=1

Ilm( ilm cos Wlm_'_ ﬁ;lm sin Wlm)

Insertion of (33) into (32), simplification using (12), and deletion of equations that are satisfied identically (the third equation) yields the
two equations

dod
- .
2 i Ezkl + E kcxx('x _x/)+2kchx _x{g)
(kL oo — @’ mL)x, =1 m=1 foLf#i
(kch LYY wzmi‘)yi S od “
ilm_ i i i i
> ke DK (- )+E kY, (k= y
I=1 m=1 f=Lf#i

dod ilm Jilm |, Film s Tilm ilm ilm Tilm | =ilm s Gilmy ilm
+22kilm = (g," cos ™ + £, sin ff"")cos ¢ + (7,™ cos M + 77, sin f™)sin ¢

P : U N ) ) N ) N =0 i=1.2,....,a (34
I=1 m=1 - (g’;}”’ cos /™ + {},1’" sin /™)sin ¢/ — (n'plm cos "™ + 7_7;,1’" sin /"™)cos /"™

Substitution of q from (28) into (8) and use of the same simplification process as for q yields

o di
2 . . E E k;l[m E kC )L’C(y(. yf) + E k(,g’ ’C’C(y(.
[ (kL,”QL wm,)y. . I=1 m=1 f=1#i
(ka - wzmic)xi dood
- D ki 4 2 Kl = xl) + 2 K,
I=1 m=1 f=1f#i
d llm ilm , Film ilm ilm ilm Jilm | —ilm Gilmy o ilm
smt/f +{, cosz,# Jeos " + (= 27, sin " + 77" cos f™)sin
+22k”'" v =0 i=12.....a (35
=1 m=1 ( {'lm sin /" + g“""’ cos ¢/"™)sin /™" - (- ’lm sin /" + _'lm cos f/™)cos /™

Using (14), (16), and assumption 4, it can be shown that only 2a of the 4a equations in (34) and (35) are linearly independent (e.g., the
first equation in (34) and the second equation in (35) can be shown to be identical except for a factor of —1). Thus, (34) and (35) can
be represented by (34) alone.

Insertion of the candidate mode q of (27) into (9) yields
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a o d
jilm jilm jilm jilm n n j i
D02 D kMG sin? g — v cos ¢ sin i) + 1}‘; k() - x )+§‘, K (x]—xD)
n=l,n#j L
(Ko — )]

=1 I=1 m=1
;,bxx
5 G
+| (K, ghyy ~ @ méz)yé

a o d
1 1 1 1 j i
222"/”” COSW””SHIWIM'F)’JCOSZW”’")'F 2 kg/)v(y/ y)"'zk('gy)(y{g_ylc)
i=1 I=1 m=1 n=1,n#j 0
Ci d‘
E 2 2 Kg}l]rn(_ r/gxg sin l/fghn + r{gng cos l//glm)
i=l I=1 m=1
1 .
+22Kg'p,qp, j=1,2,....b (36)
i=1 [=1
As before, the last term is expanded using (31) and the matrix definitions in Appendix B as
a o dl a ¢ Zjilm sin %ilm
2 2 Kﬂprqpr 2 E 2 Kjtlm Ilm 2 2 E Kjllm( ilm coS l’z/lm + q;)lm sin lA”lm) — 2 2 E Kg[l}m cos lzjlm _ Zjilm cos l//glm
i=1 I=1 i=1 =1 m=1 i=1 =1 m=1 i=1 =1 m=1 i _jilm
.
prs
Z—jilm sin lpi;ilm
+sin /" — ZM cos Y j=1,2,....b (37)
_ rézjilm
Jilm _ _ jeilm s jilm ilm jilm g, ilm
==/ sin @ " + 97, cos &) " + olu,
(38)

Z]ilm —_ O'Jg;,lm sin aglm + ;]zlm cos a/zlm + U]—;’lm

where 7/ and 7™ are introduced for convenience. By Assumption 1, z/""=z/"'" for all i,j,1,m. Using this and (12), (37) simplifies

to

b (39)

a d dod (" cos " + 7 sin §/")sin i

il il .
2 E K!];mqm E E E K‘“ m Zﬂlm cOS l//lm Zjzlm sin Wlm)COS ‘//zlm Jj= 1,2, ...
=1 I=1

i=1 I=1 m=1
0

By substitution of (39) into (36) and use of (17) and (18) the third equation in (36) vanishes identically and the first two yield

Jdod b
; . E 2 2 Ki,’[l,mx; sin’ l,/lglm + E k;”m(x’ xy) + E kcg m(xi, —xl)
(ke v — @1 )X, i=1 =1 m=1 n=ln#j
(klsh yy wzmé,)yi, S i il . : " . .
E 2 2 K"y cos? g + E Kby 0 =5 + 20 Ky, 0= 30)
i=1 =1 m=1 n=1,n#j i=1
a o d B .. AL .. A .
- (Zjllm cos l//lm +Zjllm sin Wlm)sin l//zlm '
Y Xy e [F0 i= 12 b (40)
i=1 =1 m=1 | — (2" cos ™ + 7" sin ff")cos i)
Insertion of the candidate mode q of (28) into (9) and use of the same simplification process as for q yields
Pd b
o 22 2 wysin” g+ X k- >+Ekfgxx<yg—y;>
(kgbxx w my)y, L A n=ln#j
(kgb o wzmé)x;;, Ll
=2 20 2 KJmd cos® g + E K (= x]) + 2 Kl (5
i=1 I=1 m=1 n=1,n#j
(41)

(- Zilm gin IZ/Im + 71 cos Wlm)sin l//glm

il
oo
i=1 I=1 m=l = (=" sin "+ 71" cos ™M) cos i,

By use of (19), (20), (21), and assumption 4, only 2b equations of the 4b equations in (40) and (41) are independent. Satisfaction of (40)

implies satisfaction of (41), so (40) and (41) and can be represented by (40) alone
Finally (27) and (28) are substituted into (10) and expanded using the matrix definitions in Appendix B. For notational convenience

j=1.2.....b

two new variables L and L™ are introduced to describe the result
FEBRUARY 2007, Vol. 129 / 9
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dt

b
Lilm — E Kzlmnqzln 2Mzhnqulm + (Kil;n)quC + 2 (Kgll’m)Tqiy =0
n=1 j=1 i=1,2,...,a, [=1,2,...c 42)
d m=1,2,....d
Lilm — 2 K;']lmn(—l;')ln _ wZM;')lmmq;)lm lem) + E (K/llm
n=1
The following identity is observed
(Krlm TqLL cos l//lm(Ktlm quc+ sin l,//llm(K’L;m T— (43)

This is verified by expanding K’ " according to the definition in Appendix B, substituting /"=y~ yi!™ expanding sin(x+y) and
cos(x+y), and simplifying using sm2x+coszx= 1. This and a similar identity for (K;,l;”)r along with (11) and (31) allows (42) to be

written as

dt

b

Lilm=2 Kzlnln(ctllnqlln+szlm ln) wZMllmn(Cllm ilm Sllnl—llm)+(Kllﬂl) (Cllmql +Sllm—t)+2 (Knlm)T(Czlmq +Szlm /) 0

n=1

dt

iilm — E K;lmn(_ Silmq;lrn + Cilm(—léln) _ wZM;’)lmn(_ Silmq:;lm + Cilm(—lélm) + (Kzlm)T( Szlm i e Cilm—i) + 2 (K
j=1

n=1

Jj=1

1zlm)T( Szlm(l + Cilm(—lé) =0

cp 8&r

i=1,2,...,a
1=1,2,....c' (44)
m=1,2,....d
Factoring out common terms yields
ilm ilmy ilm ilmy ilm ilmy ilm . ilmy ilm 1’2" a
L™= C"L"" + S"™L"" = cos /" L"" +sin /""L"" =0 ) ; 43)
=1,2,...,c
T ilm _ _ Qilmy il ilmy ilm _ _ i pilmy il jlm ilm _ .
LI”I__SlIﬂle+CIWILl ’71__Slnl//mLIm+COSWWILl m_om=l’2’. ’dl

This shows that L7 and L™ for /> 1 can each be written as a
linear combination of L' and L', and (45) represents, in gen-

eral, only 6% ,d independent equations from L{'"=0 and L
=0. Thus, (34), (40), and (45) form a 2a+2b+62{d" degree of
freedom eigenvalue problem.

The eigenvector for this reduced order eigenvalue problem is
[t ye x2 y2ooexl Xyl ap e qlay g ]”
where q;ft is defined in (7). From each eigenvector of this reduced
problem, two eigenvectors of the full problem are generated ac-
cording to (30) and (31). If q and q in (27)—(31) are interchanged,
the eigenvectors of the full system (3) must remain the same (i.e.,
the choice of which vector is q and which is q is arbitrary). Thus,
each eigenvalue of the reduced problem has multiplicity two (ex-
cept for special parameter combinations where two or more de-
generate eigenvalue pairs happen to coincide). For each degener-
ate eigenvalue of the reduced problem, both reduced problem
eigenvectors generate identical eigenvectors of the full problem.

Thus it has been shown that if all planet sets have three or more
planet trains, then there are a+b+33%,d’ numerically different
translational natural frequencies, each with multiplicity two.

al.1 1
xgg Vot

3.3 Planet Modes. By describing each planet train’s motion
as a scalar multiple of the arbitrarily chosen first planet train’s
motion, a candidate planet mode associated with planet set i is
written in the form

qi=[0"‘0|0"‘0|0’”(];x0"'0]T (46)
by =[w'q wialh wialy - wegi)” (47)

with q defined in (7) and i €{1,2,...a} denoting a particular
planet set Insertion of (46) and (47) into (8)-(10), expansion us-

10 / Vol. 129, FEBRUARY 2007

ing matrix definitions from Appendix B, and use of (38) leads to

o ¢ d g;lm cos l/jlnl+ nilm sin l,[film
EKﬂszqult 2 12 k,1m _ zlm sin Wlm pl cos W‘/m -0
=1 =1 ilm_ilm
- ")
(48)
G J sin %ﬂm
2 ngpthq;lt_ 2 le K,g]lmzjilm —cos %ilm -0
=1 m=1 _rj
4
j=12,...,b (49)
(Kil_ 2Mil) [ il 0 1=1.2 i (50)
O Mpwiq, =0, [=12,...,c

For non-trivial solutions (47), w'#0 for at least one I
e{1,2,...,c'}. Using this and (11), (50) simplifies to the same
eigenvalue problem for any such /. Namely

(Kj), — 0’M,)q), = (51)

This is the reduced order eigenvalue problem for the motion of a
single planet train. There are 3d’ eigensolutions of the reduced
problem (51). The eigenvalues are distinct, in general, but they
could be degenerate for special parameter combinations.

It remains to determine the w' in (47) and satisfy (48) and (49).
The first two equations in (48) represent forces that the planets
exert on the carrier for deflection in a given mode. At each planet,
the forces are represented in a local coordinate system (i.e., radial
and tangential directions), resolved into the global x and y direc-
tions, and then summed. This can be simplified by resolving each
force into an intermediate coordinate system. The resultant forces
on the carrier in the x and y directions from the /th planet train are

Transactions of the ASME
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d
F;l: WIE k;lm(_ g;';lm cos {//‘lm + n;lm sin Wlm)

m=1

d
i i Am e i i .
F; =WIE k;y m(— g;m sin l//lm— 7];) m o l//lm)

m=1

(52)

These forces resolved in the radial and tangential directions of the
(arbitrarily chosen) first planet are

F’Z: Flcos /" + F! sin ¢/

F’;éz — Flsin /" + F’VI cos ¢! (53)

Substitution of (52) into (53) and simplification using trigonomet-
ric identities yields
di
F’Z: WIE [~ gj)lrnk;lm cos(ym — /") + ﬂ;lmk;lm sin(y/™ — /']
m=1

di
Fié: WIE [_ g;lmkzlm Sin(l//lm _ W’ll) _ n;lmkélm COS(l//lm _ l/}ll)]
m=1

(54)

The sums in (54) are the same for every I, thus le:WlF? and
F ’lewlF ’7} (where w!'=1 without loss of generality). Then, resolv-
ing these forces back into the x and y directions (i.e., inverting
(53)), the first two equations in (48) are expressed as

i
c

| | E w! cos y/!!
|:F§ - Fﬂ :| =1 0
i i i
F,

C
> wsin !
=1

(55)

The determinant (F ’7;)2+(F 2)2 of the matrix in (55) is nonzero
unless the planet modal deflections £ and 7™ are such that
each planet train exerts zero resultant force on the carrier (i.e.,
F’,;:F’;:O). These modal deflections are determined by (51),
however, which involves the planet inertias, bearing stiffnesses,
and mesh stiffnesses, so the deflections will not, in general, satisfy
F“:F?:O, which are independent of (51) and do not involve
inertias or mesh stiffnesses. Thus the matrix is, in general, invert-
ible and the two sums in (55) each vanish.

The third equation in (48) represents the moment exerted on the

carrier by the planets. Satisfaction of this equation requires either
E;ilwl =0 or E‘Vf;:lkilmri,lm 71"=0. The second of these is indepen-
dent of the 3d' equations of (51) that determine the 7/;,1”‘ and so

will not be satisfied, in general. Thus, Elfilwl =0. Therefore, in the

general case, three constraints on the w' have been obtained.

i i i

Ewlsinlﬂ“zo Ewlcosc/fllzo 2w1=0 (56)
=1 I=1 I=1

A similar procedure shows that (49) gives the same three
equations.

Ambarisha and Parker [9] proved that for a simple planetary
gear the number of independent solutions of (56) is exactly c'
—3. Thus, planet modes exist only for planet sets with four or
more planet trains. Wu and Parker [7] give the following ¢'-3
closed-form, independent solutions based on their consideration of
simple planetary gears.

+1)2m( -1 i_3
w’:cosw, n=1,2,...,[02 } (57)

C

Journal of Vibration and Acoustics

+1)2m(1-1 i3
w[=sinw, n=1,2,...,lc2 J (58)
c

where the brackets in (57) and (58) denote the ceiling and floor
functions, respectively.

For each eigensolution of the reduced problem (51), ¢!~3 inde-
pendent vibration modes of the full problem (3), each having the
same natural frequency, are constructed from (46) and (47), and
the ¢/~3 independent solutions of (56). Thus, for each planet set
i=1,2,...,a there are 3(c'—3)d’ vibration modes of the form (46)
and (47); these are grouped into 3d’ sets of degenerate modes,
where each set has an associated natural frequency of multiplicity
c'=3.

For special parameter combinations, it may happen that a rota-
tional mode or translational mode may have no motion of the
carrier(s) and central gears. These modes, however, should not be
considered as planet modes because the planet motions satisfy
(22) or (31) and not (47), (57), and (58). For example, in the
system of Fig. 6 and Table 1, if the pressure angles of all of the
gear-planet meshes are changed to zero (ie., o im_0 for all
i,j,l,m), then there is a pair of modes with frequency 5811.5 Hz
that have no motion of the carriers or central gears. One mode in
this pair is a planet mode with planet motions governed by (47),
(57), and (58), but the other should be considered a rotational
mode because its planet motions are governed by (22).

3.4 Final Calculations. The total number of modes in the
three mode types considered is 3(a+b+2{,c'd"). This equals the
total number of degrees of freedom of the general compound plan-
etary gear system. Therefore, the above set of modes is complete,
and all modes can be classified as one of a rotational, transla-
tional, or planet mode.

3.5 Diametrically Opposed Planet Positions. In certain situ-
ations, assembly constraints cause the planet trains to be un-
equally spaced around the carrier. In the most general case, this
causes the rotational and translational modes to couple and lose
their distinctive properties (because (12)—(21) no longer hold).
One special case of interest is the diametrically opposed case in
which pairs of planets trains are 180 deg apart. In other words, for
some i, ¢!=2, ¢! is even, and z,l/(l+"’/2)’”=77+ 1,[/[’". This is common
in practice. Each pair may be arbitrarily spaced. c/=2 is allowed,
which is an exception to assumption 3. For c¢/=2, the terms
“equally spaced” and “diametrically opposed” are equivalent. The
properties of such a planet set follow the results for the diametri-
cally opposed case.

For this spacing, the vibration modes retain a structure that is
similar to the equally spaced case. Lin and Parker considered
diametrically opposed planets for a simple, single stage planetary
gears in [12]. Those results are now generalized to the compound
case.

Assume, without loss of generality, that planet set 1 has dia-
metrically opposed planet trains. Any other planet sets may be
either equally spaced or diametrically opposed. Consider the ef-
fect of this spacing on the simplifications involving planet posi-
tion angles (12)—(21). Equations (12) and (17) still hold for all i
but the others do not. The proofs of the properties of the rotational
modes and planet modes do not involve (13)—(16) or (18)—(21),
thus, the properties of these modes retain their properties in the
diametrically opposed case. The translational modes, however, do
depend on these equations and thus their properties are modified
for the diametrically opposed case. Specifically, translational
modes have distinct eigenvalues instead of multiplicity two.

Some numerical solvers may return coupled eigenvectors for this example de-
generate pair. The results will not look like either planet modes or rotational modes.
They can be decoupled by an orthogonalization process.
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The candidate carrier and gear deflections for a translational

mode are
.=y 0], i=1,2,....a (59)
q, =[x}y, 0", j=12,....b (60)

The candidate planet motions are linear combinations of the
planet motions of the (arbitrarily chosen) first two planet trains,
that is

Sil’l( l/film _

) lz/Zm)
l— _
f - sin(z//z’" _ Wlm)

sin( l//’lm ol

for all i such that ¢'=3  (62)

v
)

For planet sets with two planet trains’

il _

T sin(gm -

fil=1, f2=-1, g'=g?=0 forallisuch that ¢'=2
é«ilm é«ilm §i2m (63)
p p p
Q"= 7" | =1 9" |+ 8" 7| forall ilm . .
yim yim i2m In both cases the following relations hold:
up P P
where " and g" are independent of m e {1,2,...d"}. In terms of J r
lanet trains this is . .
' il 2 Ef’=2g"=0 for all i (64)
(I;Ff'l‘]p;"' g'lq:m for all i,/ (61) =1 =1

For planet sets with three or more planet trains, f and g are
defined as

Start by substituting (59)—(61) into (8) and simplifying using
Assumption 1, which yields

dod
EEkllmxl"' E kcxx(x _'xf)+2klrjgxx _x{g)
=1 m=1 f=1f#i
(kcbu —w ml)-x d a
(Kly = @®mOye |+ 2 D2 ke D k(- v+ E K, (k=)
0 =1 m=1 f=Lf#i
2 E ( rllmxl sin l//lm+ rllmyi cos l!/'lm)
=1 m=1
dod (fy {llm+gll ’2’")(:05 l//lm+(fll llrn+gil7];2m)sin l#‘[m
+ E E kzplm (fy §11m+g11 12m)qln Wlm (fl”]llm+g 7;;2’”)005 l//’lm =0, i=1,2,....a (65)
=1 m=1 llm(]a[ﬂtlm_'_g 7]12m)
Simplification using (12) and (64) and deletion of equations that are satisfied identically (the third equation) yields
dod
2 N Ezkjlml"' E kcxx(x _xf)+2kcgw _x,/g)
(Klpy o — @’ m)x, I=1 m=1 f=1f#i
|+ . .
(kLb Yy wzmi)ﬂ ¢ d “
22k 2 kLO-yD - E Ko e =
| =1 m=1 f=lf#i
dd m : ilm
. 2 2 k,‘],,,|: (f: {llm+g11£12"1)COS l//l (fll"]”m"'g 7];2’")91n l//l :| o 1o . (66)
PR 14 _ (f; gzplm +g11§1172m)sln Wlm_ (fllﬂ;,]m+gll77;2m)COS Wlm
Insertion of (59)—(61) into (9) and a similar reduction yields
b
L 2 E 2 g sin® g (- ) + 2 Kl = x0)
(kg,, = @)X, o =t n=ln#j +2 s E i " sin z,[i
K, . — w?ml)y! a ¢ d b "7’”" cos z//”m
sbyy &8 jilm_ j 2y jilm jn j i =l =l m=l
> 2 2 ly"vheos® Y X KL >+E Ky 0 =50
=1 I=1 m=1 n=1,n#j
=0, j=12,....b
Zjilm - O'j(]dlgi,lm +gi1 ;2m)sin ai;ilm_‘_ (fil,)?;')lm +g 7}’2m)COS a/llm O'j(filui,lm +gilu;')2m) (67)

3Equation (62) is similar to the result given in [12], but (63) is not given in [12]. This is an omission in [12] that is corrected here.
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where the definition of 7 is introduced for convenience.
Finally, substitution of (59)—-(61) into (10) gives

i

XL‘
'={K], - o’M) }(fq), + g"q)) + (K )| ¥l
0
i
. ’ i=1,2,...,a
+ 2 (KL v | =0, 1=12,....¢ (68)
0
where N¥ is introduced for convenience.
For all planet sets i the following identity holds:
X X X
(KE, )T v | =17 vl |+ & (K2, vl (69)
0 0 0

This is confirmed by expanding the matrix components on each
side according to the definitions in Appendix B to yield

- xé cos " - yi sin /™M = — xi(f” cos /" + g cos >
_ yi.(gil sin (//'Zm +fil sin d/’lm)
¥l sin " — 3! cos ™ = x(f sin 1™ + g sin ™)
~ 3 (&' cos "+ £ cos )
These equations hold for any values of x,. and y.. if and only if
cos " = fll cos /1" + g cos "
sin /"™ = fil sin /' + g sin " (70)
Substituting the definitions of £ and g in (62) (or (63), as appro-
priate) into (70) shows that it, and consequently (69), is 1denucally

satisfied. An identity similar to (69) can be shown for K;,
These two identities along with (11) allow (68) to be ertten as

i

Xe
N {Kzl _ wZMl }(flq;l,+gilqp, (flerpt_'_ngKICZpr)T ytC
0
X,
+ 2 (filKi,;,+gllKjlzp,) y}, _]athl +gle12
- 0
i=1,2,...,a
1=1,2,...,c

Because N for any [ can be written in terms of N'! and N2, (68)
represents exactly 64 linearly independent equations for all planet
sets such that ¢/ =3, and 3d' linearly independent equations for all
planet sets such that ¢/=2.

Consequently, (66)—(68) form 2a+2b+62; .i=3d' +3%,; .iod’
linear, homogenous equations for the same number of unknowns
with parameter w?. This is the reduced order eigenvalue problem
for the translational modes when one or more planet sets have
only two planet trains. Thus it has been shown that if any one or
more planet sets have diametrically opposed planet trains, even if
all other planet sets have equally spaced planet trains, then there
are exactly 2a+2b+63,; i=3d +33; i»d’ translational modes of
the form (59)—(61), each with an associated natural frequency that
is, in general, distinct.

3.6 Sensitivity to Relative Planet Set Orientation. Because
the above analysis places no restrictions on relative angular ori-
entations between the planet sets of multi-stage gears, the derived
modal properties are the same for any relative orientations. The
question remains, however, whether or not the natural frequencies
and vibration modes themselves, not just their properties, are af-
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fected by the relative planet set orientations. In the most general
multi-stage case, the eigensolutions vary with relative orientation,
but they do not for systems satisfiying assumptions 1-4. Each
vibration mode type is considered separately.

For rotational modes, expanding the reduced order eigenvalue
problem of (23), (24), and (26) using matrix definitions in Appen-
dix B shows that it does not explicitly or implicitly involve the
planet position angles. Therefore, rotational natural frequencies
and vibration modes do not change with relative planet set
orientations.

Planet modes are derived from the reduced order eigenvalue
problem (51) and the w' satisfying (57) and (58). The reduced
problem eigenvectors q;l, and the natural frequencies w do not
depend on the planet positions because Ml[t and K”, in (51) are
independent of the planet positions. Equations (57) and (58) show
that the w' do not depend on planet positions. Thus, the planet
natural frequencies and vibration modes are independent of rela-
tive planet set orientation. This is expected as the deflections are
confined to individual planet sets.

The translational modes are more difficult to consider analyti-
cally. The reduced order eigenvalue problems from (34), (40), and
(45) (for equally spaced planet trains) and, (66)—(68) (for dia-
metrically opposed planet trains) involve the planet position
angles explicitly in summations of functions of the planet posi-
tions that change for different planet positions. An eigensensitivity
analysis (as performed by Lin and Parker in [15]) would show the
sensitivities of the natural frequencies to planet positions. Such an
analysis is beyond the scope of this paper. On physical grounds,
however, it can be seen that the degenerate modes in the equally
spaced case are the result of the translational stiffness and inertia
being isotropic (i.e., independent of the direction of translational
motion). After rotation of any carrier, this isotropic relationship
still holds. Thus, the natural frequencies and mode shapes are
independent of relative planet set orientation. For the diametri-
cally opposed case, however, the translational modes are not de-
generate. Thus, a change in the relative orientation of the planet
sets will change the natural frequencies and vibration modes.
These results have been verified in numerical examples.

4 Discussion

While the mathematical proof is of interest mainly to the aca-
demic researcher, the results are useful for both the practical gear-
box designer and the academic researcher. To a gearbox designer,
the prediction of natural frequencies allows resonance conditions
to be avoided when designing a planetary gear system. The clas-
sification of modes into various types and knowledge of the num-
ber of numerically different natural frequencies is also important
for avoiding resonant response, reducing excitation of particular
mode types, and understanding whether response in a particular
mode will generate torque (rotational modes), force (translational
modes), or neither (planet modes) to the structures supporting the
central gears (sun and ring). In cases where design constraints
require operating tooth mesh frequencies to be near natural fre-
quencies, the use of planet mesh phasing can suppress resonant
response [9,14,18,19]. Understanding and application of planet
mesh phasing depends on the unique properties of planetary gear
free vibration as shown here. Future work on understanding the
various mode types may identify certain types of modes as having
more significant impact on noise, fatigue life, and other factors of
interest.

For research purposes, extension of the dynamic model of
simple planetary gears to the general compound case allows other
investigations of simple planetary gear vibration to be extended to
the compound case. Research on nonlinear response, parametric
excitation from fluctuating mesh stiffness, elastic ring deforma-
tion, etc. (e.g., [7,8,10,20-22]) can be carried out for general com-
pound planetary gears. These analyses benefit from understanding
the properties of the different mode types, particularly because
such analyses frequently adopt the assumption that only one or
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two modes are present in the response (modal truncation). In that
case, one can examine the interactions between two modes of the
same or different types. For example, is a combination parametric
instability possible between a rotational and translational mode?

5 Summary and Conclusions

A dynamic model of compound, multi-stage planetary gears of
general description has been developed. The model has been used
to examine the free vibration of compound, multi-stage planetary
gears. For identical, equally spaced planet trains, the natural fre-
quencies and vibration modes of compound planetary gears have
highly structured properties due to the system’s cyclic symmetry.
Specifically, all vibration modes can be classified into one of three
types: Rotational, translational, and planet modes. Rotational
modes with distinct natural frequencies have pure rotation of the
central gears and all planet trains in a given planet set move iden-
tically. Pairs of translational modes with degenerate natural fre-
quencies have pure translation of the carriers and central gears,
and motions of the planet trains in a pair of orthonormal vibration
modes can be found by a simple transformation of the first planet
train’s motion. Planet modes have motion of the planets in one
planet set only and no motion of any carriers or central gears; the
multiplicity of their natural frequencies is dictated by the number
of planet trains in a planet set. Reduced order eigenvalue prob-
lems for each mode type are given explicitly.
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Nomenclature
a = number of carriers=number of planet
sets
b = number of central gears
¢’ = number of planet trains in planet set i
d’ = number of planets per train in planet set
i (number of planets must be the same
in all trains)
e = static transmission error, L
F(1) = externally applied force, F
I = mass moment of inertia, M-L2
k;lm = planet bearing stiffness of planet m in
planet train / in planet set i, F/L
k' kg, = shaft stiffness between gear j and gear
n, F/IL
Kgfgg = shaft stiffness between gear j and gear
n, F-L/rad
ki}”xx, ki{’w = shaft stiffness between carrier i and car-
’ rier h, F/L
K’Z’% = shaft stiffness between carrier i and car-
rier h, F-L/rad
kg v kdyyy = shaft stiffness between carrier i and gear
Jj, F/IL
Ki.’;,,% = shaft stiffness between carrier i and gear
Jj, F-L/rad
k;,ll',’f'é{, k;,l;,"';,] = shaft stiffness between planet m and n
of planet set i planet train /, F/L
KZZqu = shaft stiffness between planet m and n
of planet set i planet train /, F-L/rad
Kepxxs kep,y = bearing stiffness between carrier i and

_ ground, F/L
K., 99 = bearing stiffness between carrier i and
ground, F-L/rad

= bearing stiffness between gear j and
ground, F/L

Jj Jj
kgb,XX’ kgb,yy

14 / Vol. 129, FEBRUARY 2007

ngb,ee = bearing stiffness between gear j and
ground, F-L/rad
m = mass, M
r = radius (base radius for gears, radius to
planet centers for carriers), L
u = rotational coordinate, u=ré, L
x,y = translational coordinate, L
jilm - = pressure angle at the mesh between gear
J and planet m of planet train / of planet
set i, rad
a;,l"’” = pressure angle at the mesh between
planet m and planet n of planet train / of
planet set 7, rad
B = for meshed planets: angle from the posi-
tive £ direction of planet m to a line
connecting planets m and n in planet
train /, planet set i. Undefined for
stepped planets. B""=0, rad
,}/'lmn — Bilmn_a;')lmrl, rad
8 = deflection of an elastic element (com-
pression positive), L
Kgll,m(l) = time varying mesh stiffness between
gear j and planet m of planet train / of
planet set i, F/L
K;’Zm(t) = time varying mesh stiffness between
planet m and planet n in planet train / of
planet set i, F/L.
o { 1 if gear j is a ring(internal gear)
—1 if gear j is a sun(external gear)
6 = rotational coordinate, rad
#/"(1) = angular position of planet m of planet
train / of planet set i, rad
l””'zm — l/’jlm_lpilm’ rad
lr//glm _ lﬂilm-{-a'ja'glm, rad
A{g',ilm “ilm_lpjilm’ rad
1) = eiternalfy applied torque, F-L
{,m = planet radial and tangential coordinates,
L

Subscripts

bearing (to ground)
carrier

gear

mesh

planet

= planet set

= planet train

T8N I~ =
Il

Superscripts

carrier or planet set
central gear (sun or ring)
planet train

planet

= depends on context

S - -
Il

Appendix A: Equations of Motion
Carriers:
L,i di
ML+ Ky o+ 25 2 k"T" cos /(1) = &) sin /()]
=1 m=1

a

b
+ 2k =)+ D K (=) = FL (1)
j=1

n=l,n#i
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dod 5;;1”‘" —_ é«ilm sin ,}/lmn gzln sin ,}/lnm+ 7] ™ oS ,}/lmn + 771/;1 cos ,)/‘lnm

my +k, V‘yt + 2 2 k’l’”[é’{l’" sin ¢/"™(1) + Sl’” cos "™(1)] ‘U ,zm + u:zn + ellmn(t) (A5)
=1 m=1
(Silm =xi. cos W‘lm([) +yi sin W‘hn([) _ gilm (A6)
i n ¢ ¢ ¢ P
+ E Ky 0=y + 2 kil (vl = ¥ = FL, (1)
n=lni 5’1'" =—x'sin ¢"(1) + y'. cos "™ (t) + r" .~ ””’ (A7)
dod b
i tlm ilm Qlm
16+ Kep ool g ;:1 k"o E <8 oo 0= 0]) Appendix B: System Matrices

Many matrices have the same names as those in Lin and Parker

in . [4]. Identically named matrices are similar or, in some cases iden-

+ 712# Koo 0= 00) = 7(0) (A1) tical, to those in [4]. Additionally, the K, and K,, matrices are
rebn similar to the K.», K,,, and K, matrices in [4].

Central gears (suns and rings). Same as (2), repeated here for

—Ix! oer %x! oo wPIx! ... @7
completeness x=[x, Xclxg Xg|Xps Xps]
e MLt 00 = AT =l o T
/{‘Jg + kjbxxx;; 2 2 2 K{;’”’(f)f?’ " sin W”m(t) + 2 kcg XX il ill idT  ilm ilm _ilm  ilmT
i=1 I=1 m=l x, =[x, - x, T x,"=[¢ u,"]
b
C F()=[F.() --- F0) F(p) -~ F2() 0 --- 0]"
n=1,n#j

Fi(r)=[F. (1) F. () 7(0]"

Fi(0) =[F) () Fl(0) 701"

o

ml§ kL, v+ 2 > E KI() 8 cos Y1) + 2 K

=t =t =l M =diag(M;, - M{,My, - Mg, M, -+ My,)
b
o . . i _gi i\ M = diae(m! . T
X(yé_yc) + E k; H(yj Y ) = F{g )v(t) M, dlag(m m 1) M dlag(mi,,mg,lg)
n=1,n#j P
M), = dzag(M’plt,M’Pzt, M)
dod .
e o il _ . i £gil22 | ngildd
s Kt 353 00+ 3 K0 ) N, =i M. M)
=1 =1 m=1 ilmm ilm lm il ilmy2
M, -dlag(m' mi" I '"/(r’ )%)
+ 2 KO- 6)=170) (A2) K=K,+K,
n=1,n#j
. 1 12 1 b
Planets: K, =diag(K,,.K,, -+ K?b,Kgb, Ky 0 0)
b ch - dlag(kcb XX? (h y}’Ki'h,ﬂg)
milmédlm ktlm(sllm 2 K_/'ilm([) 5jiln1 sin a/ilnz
P 8 (4 {4 j . j j j
J=1 Kﬁ;b =diag (k{gb,xx’k{gb,yy’KIgb,eﬁ)
+ 2 [- ’lm"(t)é’l'"" sin /" 4 ;’;”&({”’” ””)] =0 Kil Kia E Ki; Kiﬁ E Ktl‘,ps
, Kaa ! Kal . Kab E K¢
___________________ C8 T8 I6PS
m;lmn;)lm _ k;')lméf:n + E K[/;,illzm(t) %ilm cos a{;lm E K; oo K;b E K;lps .. Kéiﬁ
j=1 K, = : oot ol
d ! K | K . Kb
; ; : ; Y TR LA Ry 37 8PS
3 051 cos /5 0= 710 | T
n= 1 1
Jilm b symmetric : E K,
i+ 3 0] 2[ O3 K, db e
P Jj=1 . . .. [P
ilm iln in E E Killm - 2 chj:t - E Ki*jg’ ifi=n
<_ul_ _u,,_)] =0 (A3) Re=liama g
ilm\2 ilm_iln - .
(") " K, otherwise
Deflections of elastic elements (compression positive) im .
1 0 —rg"sin /™
6”1”' y’ cos W'l’”(t) sm 1//’1”’(1) + r’ 6’ + U’é”lm sin a”lm K= kllm 1 A" cos yim
- 77;,1”‘ cos ozg,’l”’ - u;lm + ei’ll,m(t) (A4) symmetric (rilm)?
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Kirz —_ dl-ag(km km Kmﬁg) Kzlmn tlmn(t)

c,xx’e,yy?

K = — diae(ki kI K sin Y sin /"M —sin Y cos Y — gin
A ag C8XXTC8LYY? cg,96 ilmn : ilnm ilmn ilnm ilmn
' X | —=cos y"" sin ¥/ cos Y cos ¥ cos ¥
_ 2 ic' . ; ;
cps [Kc " Kc o e Kc,pt] —sin ,)/lnm cos ,}/lnm 1
il ) ildi Kilmn
K Kl K’ o K 7 ilmn  7ilmn pp.uu
epr =L p diag\ ky, ce-Kpp wp Gim iin
)

—cos /"™ sin /™ 0
Krlm kllm —sin l//’lm — oS l//'lm

p Note that if «""(1)#0 then k"=0,ki"" =0,Ki" =0. If

il
0 -re" 0 k'pl;"}ﬁﬁ 0, k’[m” 9& 0, or K’[m” # 0 then KZZM(I) 0. This is because

i d 4 , two planets cannot be meshed with each other and shaft connected

a . . .
with each other (i.e., stepped) at the same time.
ilmn fi ij\T if 1= ’
SN DIDIDIN VSIS RPN AL FEL
¢ | i=1 =1 m=1 =l f#) i=1
Kg4, otherwise
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