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Dynamic atomic force microscopy is currently evolving from a single to a multifrequency
instrument for nanoscale imaging often employing higher-order microcantilever eigenmodes for
improved resolution and force spectroscopy. In this work the authors study the fundamentals of
cantilever dynamics and energy dissipation when soft cantilevers are driven at their second flexural
eigenmode and interact with samples in liquid environments. Contrary to the conventional first
eigenmode operation, second eigenmode operation in liquids is often dominated by a subharmonic
response (e.g., one tap every four drive cycles) and there is an energy transfer to the first eigenmode
creating a new channel of energy dissipation and compositional contrast. © 2010 American Institute

of Physics. [doi:10.1063/1.3457143]

Many newer dynamic atomic force microscopy (dAFM)
methods aim to excite higher-order eigenmodes of the micro-
cantilevers in liquid environments for improved resolution or
compositional contrast on biological samples under physi-
ological native conditions or for studies of ordered water on
solid-liquid interfaces. For example, because the stiffness
and quality factor of the second eigenmode is higher than
that of the fundamental, stable imaging may be possible at
smaller oscillation amplitudes,1 the phase contrast may be
better,” and for some situations the undesirable “forest of
peaks” in acoustic drive’ may be reduced. In addition, the
second eigenmode is also driven as a part of “dual-ac” or
bimodal schemes® for increased compositional contrast.

Yet, before moving to these excitation schemes it is im-
portant to understand how, if at all, operating at eigenmodes
beyond the fundamental is different from operating at the
fundamental eigenmode. In this work, the dynamics of AFM
cantilevers in liquids are investigated when the cantilever is
driven at its second natural frequency; a situation which,
from prior work in air or vacuum, ought not be essentially
different from operating at the fundamental natural fre-
quency. The dynamics in fact can be surprisingly different-
often showing an unexpected strong, 1/n subharmonic re-
sponse that leads to the excitation of the first eigenmode,
causing the tip to tap on the sample in a period n pattern that
repeats every n drive cycles. This finding has major implica-
tions for the use of second and other higher-order eigen-
modes in liquid environment AFM for imaging, composi-
tional contrast, and force spectroscopy.

The experimental method is as follows. An Agilent 5500
AFM with acoustic drive® is used. Results are initially pre-
sented for Mikromasch CSC37B cantilevers and results for
other levers are discussed later. The driving frequency was
chosen as the acoustic tuning peak closest to thermal tune
peak of the second eigenmode. The magnitudes of the sub-
harmonics were monitored using additional lock-ins. Experi-
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mental approach curves were repeated over one hundred
times (including different cantilevers and different areas of
the substrate) and were quite repeatable.

The samples studied were freshly cleaved mica and
purple membrane (PM). The PM was wild-type bacterior-
hodopsin isolated from Halobacterium salinarum (Sigma-
Aldrich). The PM was deposited on mica and incubated for
15 min. Then the buffer solution was wicked off and the
liquid cell was filled with fresh buffer (20 mM TrisCI 300
mM KCI).

The VEDA simulator (Ref. 5) was used to mathemati-
cally simulate the cantilever dynamics in liquids when the
second eigenmode is driven and the cantilever interacts with
the sample. A three eigenmode model [Fig. 1(a)] is used.?*
The equations of motion are’
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where ¢,(1), w;, Q;, k;, F,5, and F; are the tip deflection (rela-
tive to base motion>’), natural frequency, quality factor,
equivalent stiffness, tip-sample interaction force, and driving
force of the ith eigenmode, respectively, (), is the driving
frequency (Q,=~ w, for this work), d=Z+y+3> ¢, is the tip-
sample gap, where Z is the cantilever-sample separation and
y(¢) is the motion of the cantilever base due to dither pi-
ezoexcitation. For simplicity, a Hertz contact model is used
to describe the tip-sample interaction force:*

0, d>0

Fyd)=\4 , =
ts( ) EE*\*’R(— d)3/2, dSO

s

where R is the tip radius and E* is the reduced elasticity
E*=[(1 - Vtzip)/Elip+(1 - sample)/Esample]_1 where v and E are
Poisson’s ratio and Young’s modulus.

Because the optical lever scheme in most AFMs mea-
sures slope not actual deflection, the observed deflection is
u:E?zl Xiqi» where y; is the slope at the end of the cantilever
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FIG. 1. (Color online) (a) Schematic of the three eigenmodes used and the
energy flow between them. (b)—(e) Simulated vs experimental approach
curves on mica in buffer solution. Amplitudes are nm peak observed deflec-
tion calibrated to second eigenmode. (f) Time history of experimental and
simulation deflection at Z=1 nm.

in the ith eigenmode. For a uniform rectangular beam
X2/ x1=3.47, x3/ x1=5.70. In this paper we report the experi-
mentally observed tip deflection by multiplying the observed
photodiode signal (volt) by (1/y,)*sensitivity (nanometer
per volt) of the first eigenmode. When the cantilever is not
contacting the surface the response is dominated by the sec-
ond eigenmode and observed tip deflection equals actual de-
flection. However, in intermittent contact other eigenmodes
are excited so observed deflection is some combination of
the different eigenmodes but the contribution of each eigen-
mode is unknown so it is impossible to know the actual tip
motion. Thus the sensitivity calibration provides only an es-
timate of the amplitude.

The parameters used in the simulations are given in
Table I and are based on a typical Mikromasch CSC37B
cantilever. The tip radius has been tuned to match the experi-
mental results. No other parameters have been tuned.

Figure 1 shows experimental and simulated approach
curves on mica in buffer solution. Figure 1(b) plots the first
harmonic (i.e., at driving frequency) amplitude. Rather sur-
prisingly, the amplitude is nonmonotonic with Z. Similar
jumps between attractive and repulsive regimes are well
known,8 but the simulation uses a Hertz contact model that
has no attractive forces so that cannot be the cause in this
case. Figures 1(d) and 1(e), which plot the amplitudes of
different subharmonics, give a clue to this phenomenon. The
jump downs in the first harmonic amplitude correspond to
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TABLE I. Simulation parameters (typical of experimental parameters).

Natural frequency (kHz) 10, 76, 212
Driving frequency (kHz) 76
Modal stiffness (N/m) 0.6, 23.6, 185
Unconstrained amplitude (nm) 3.1
Quality factor (3) 2.8,6.5,9
Tip radius (nm) 2

Tip Young’s modulus (GPa) 130
Poisson’s ratio 0.3
Sample Young’s modulus (GPa) 60
Approach speed (nm/s) 20
Lock-in bandwidth (kHz) 2

jump ups in the 1/4 and 1/3 harmonic amplitude indicating
the onset of subharmonic response. Subharmonic behavior in
AFM has been studied before,g_](’ however, the majority of
the studies are limited to driving frequencies near the first
natural frequency and all are restricted to ambient air or ni-
trogen environments.

The exact nature of the subharmonic response is best
understood in terms of a time history plot. Figure 1(f) shows
the simulated and experimental26 time histories of observed
deflection near Z=1 nm. The tip does not tap on the sample
every drive cycle, rather, there is a pattern that repeats once
every four drive cycles. This is a period 4 response, which
corresponds to a significant cantilever response at 1/4 the
drive frequency. In essence, when the tip taps on the sample,
the sudden impact transfers energy from the driven harmonic
to both higher and lower frequencies (i.e., the first and third
eige:nmode)17 as shown in Fig. 1(a). The response of the first
eigenmode causes the tip to rebound off the sample so far
that it does not tap the sample on the next drive cycle and a
subharmonic motion is created.

For stiff samples, this subharmonic response can be un-
derstood from the theory of a vibroimpact oscillator that is
driven above its natural frequency w; (Ref. 18) where it is
known that when the drive frequency ,~2nw, then the
oscillator can strongly respond at the frequency (),/n. That
is, subharmonics solutions can occur when the forcing ex-
ecutes (approximately) an integer number of cycles while the
first eigenmode executes a half cycle. For the cantilever used
in Fig. 1, an initial period 4 solution is consistent with the
prediction for the drive frequency ),/ w,=7.6. The transition
to period 3 response may reflect the increase in the nonlinear
natural frequency of the first eigenmode due to tip-sample
interactions. For softer samples, the impact oscillator limit
does not apply and a more detailed analysis would be neces-
sary.

dAFM experiments are performed in a variety of settings
therefore it is important to understand the range of physical
parameters for which subharmonic response is likely to oc-
cur in experiments. The two most important factors are the

ratio of effective sample stiffness to cantilever stiffness [k
=(E"VAniguR)/ k] and the damping (Q;) of the eigenmodes.
The effects of these factors are studied in Fig. 2. Several
hundred approach curves were simulated for various values
of O and ki, keeping the ratios of k;/k; and Q;/Q; constant
(i=2,3). The remaining parameters were as in Fig. 1 except
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FIG. 2. (Color online) Map of subharmonic regions for a range of k; and Q;.
The ratios k;/k; and Q,/Q, were kept constant (i=2,3). Approach curves
were run to 20% setpoint ratio. The simulation of Fig. 1 is marked. The
other parameters are the same as Table I except A;yjiq=1.5 nm.

Ajpia=1.5 nm. The upper x-axis plots the nondimensional

stiffness ratio k from which conclusions about the effect of
sample stiffness and initial amplitude can be drawn. Each
approach curve was examined to determine what types of
subharmonics occurred (1/4, 1/3, 1/2, or none). From this the
map is divided into four regions.

From Fig. 2 the effect of stiffness is obvious: if the can-
tilever stiffness is increased (or equivalently, if the sample
modulus or initial amplitude decreased), then the subhar-
monic response will decrease and eventually disappear. The
effect of damping on the subharmonic response is more com-
plex, however very low Q factors tend to suppress the sub-
harmonic response.

As an example of this, the experiments were repeated
using the following cantilevers with two different tip heights:
Mikromasch cantilevers that have >20 um tip height
(CSC36B, CSC37B, CSC37C, and CSC38B) and Olympus
cantilevers that have <3 um tip height (RC800PSA,
RC150VB, TR400PB). The subharmonic behavior occurred
for all Mikromasch cantilevers tested but did not occur for
any Olympus cantilever tested. This is because the Olympus
cantilevers’ short tip height causes a large amount of
squeeze-film damping,19 making the first eigenmode highly
damped (in fact Q; <1 when within imaging distance of the
sample).

The subharmonic responses are also sensitive to the
presence of tip debris. In the experiments, a new cantilever
on clean mica would always demonstrate period 4 subhar-
monics. However, after scanning a biological sample, the
period 4 subharmonics often disappeared but period 3 or 2
subharmonics persisted. Presumably, as the tip picks up
small amounts of soft debris, the effective contact stiffness
becomes softer thus reducing the subharmonics. This may
also explain why the fit value of tip radius in the model is
smaller than expected for this type of cantilever. A smaller
tip radius effectively softens the interaction which may
mimic the effect of debris on the tip.
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FIG. 3. (Color online) PM on mica, driving frequency just below w,. The
1/3 harmonic image appears bright on the mica but dark on the PM, indi-
cating a subharmonic response on the hard substrate but not on the soft
sample. Aj;iq=4.95 nm peak, amplitude setpoint=52%, (1,=78.7 kHz,
w;=11 kHz. Image processing by Ref. 22.

The phenomenon of subharmonic response can also be
used for mapping compositional contrast. Figure 3 shows
images taken of PM on mica with {),=~ w,. In the 1/3 har-
monic image, the mica substrate appears bright, whereas the
membrane appears dark but the reverse is true for the 1/2
harmonic image. This demonstrates the following result dis-
cussed earlier: the operation on the soft PM sample is farther
to the right in Fig. 2 than on the hard mica sample. Moving
from the hard to soft sample moves the response from a
period-3 to a period-2 response.

Finally, subharmonics also have implications in the
study of energy dissipation (e.g., on solid-liquid interfaces).
To illustrate this, a naive application of the classical tip-
sample dissipation formula® to the simulated amplitude and
phase of Fig. 1 (on mica) would yield the result shown in
Fig. 4, which suggests tip-sample dissipation E,, reaches 150
eV/drive cycle. But in fact this simulation uses a conserva-
tive model so actually E;;=0. Energy is lost from the driving
harmonic but instead of transferring to the sample, this en-
ergy actually propagates to the first eigenmode (subharmonic
response) and to the third eigenmode (momentary
excitation'"*"). To prove this, energy lost to the surrounding
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FIG. 4. (Color online) Comparison of energy terms for the simulation in
Fig. 1. The classic formula (Ref. 20) predicts a large tip-sample dissipation
E, but the simulation uses a conservative model so actually E,;=0. The
classic formula is actually predicting the energy that is transferred to other
eigenmodes and then dissipated to the fluid media.
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viscous fluid by the first and third eigenmode E,,;
=f gkiq,?/ ,;Q;dt is also plotted and accounts for nearly all of
the classic formula’s prediction. Thus the study of tip sample
dissipation in liquid environments using the second eigen-
mode in dAFM needs proper accounting for energy propaga-
tion to both lower and higher frequencies.

In conclusion, the operation of dAFM in liquid environ-
ments using the second cantilever eigenmode opens up a
unique subharmonic energy transfer mechanism to the first
eigenmode. This mechanism can offer new opportunities to
map compositional contrast but can also challenge the inter-
pretation of conventional energy dissipation spectroscopy.
For researchers wanting to avoid subharmonic response
while driving the second eigenmode in liquid environments,
it is recommended to use stiffer cantilevers (relative to
sample stiffness), smaller amplitudes, or preferably cantile-
vers with overdamped first eigenmodes (e.g., those with
short tips).
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Foundation through Grant No. CMMI-0927648.
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