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Abstract
One of the key goals in atomic force microscopy (AFM) imaging is to enhance material property contrast with high resolution.

Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-

frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle

imaging conditions. Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors

explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes). It is found that such opera-

tion leads to interesting contrast reversals compared to traditional bimodal AFM. A series of experiments and numerical simula-

tions shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth), but

rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the identification of three

distinct imaging regimes in bimodal AFM. This result, which is applicable even to traditional bimodal AFM, should allow

researchers to choose cantilever and operating parameters in a more rational manner in order to optimize resolution and contrast

during nanoscale imaging of materials.
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Introduction
Atomic force microscopy (AFM) has arisen as one of the key

tools for characterization of morphology and surface properties

of materials (e.g., polymer blends and composites) at the

micro-/nanoscale [1]. Although there are many different oper-

ating modes in AFM, one of the most popular is amplitude

modulation (AM-AFM), commonly known as tapping mode, in

which the cantilever is oscillated at its first natural frequency.

AM-AFM provides two basic images of the surface, a height

(topography) image and the so-called “phase” image. The latter

is related to material properties and is frequently used to distin-

guish different domains or different blend components from one

another. While phase imaging often provides good contrast
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between different materials, it is difficult to determine the exact

mechanical property that is responsible for a particular contrast.

Further, the contrast is sometimes poor between distinct

domains or components within a polymer blend or composite.

Finally, artifacts induced by bistable imaging in attractive and

repulsive regimes often confuse the interpretation of phase

images.

An extension of AM-AFM called bimodal AFM [2], a capa-

bility that has been applied to a variety of materials over the

past five years, can overcome some of these limitations.

Bimodal AFM oscillates the AFM cantilever at two frequencies

simultaneously. This adds two additional channels of informa-

tion beyond the standard AM-AFM method, namely, the ampli-

tude and phase at the second frequency, which can be used to

enhance contrast between materials. Further, this information

can be assigned to specific types of interactions (i.e., conserva-

tive/elastic versus dissipative) [3]. With its recent widespread

usage, especially among soft materials such as biological ma-

terials and polymers, bimodal AFM has demonstrated its capa-

bility to provide new contrast and information in the higher

order mode [4-8].

The traditional choice in bimodal AFM is to oscillate the

cantilever at its first two natural frequencies, namely the first

and second flexural eigenmodes of the cantilever. However,

modern AFMs have the frequency bandwidth to excite the third,

fourth, or even fifth flexural eigenmode. This allows for the

fundamental eigenmode to be paired with many different higher

order eigenmodes for bimodal AFM operation (or even multiple

higher eigenmodes simultaneously [9]). In this work, we wish

to examine the choice of specific higher order eigenmodes for

bimodal operation in order to understand if they provide any

practical advantages in terms of material discrimination and

identification. There are several questions of interest. First, do

higher order eigenmodes probe the same types of tip–sample

interactions as lower order eigenmodes? For example, poly-

mers may be viscoelastic, so there could be a different inter-

action due to the frequency difference. Second, do higher order

eigenmodes provide better contrast between materials and/or

higher image quality? Third, can any rational guidance be

provided for the selection of the higher order mode as well as

operating parameters (e.g., drive amplitudes, setpoints, etc.) in

order to obtain the most meaningful interpretation from the

images?

In this work we show a series of bimodal experiments on a

multicomponent polymer blend using different combinations of

eigenmodes. Bimodal AFM shows excellent contrast between

the different components. We will show that there are several

interesting effects that depend on the choice of eigenmodes and

operating parameters, which suggest that there are actually at

least three distinct operating regimes in bimodal AFM (akin to

attractive/repulsive regimes in AM-AFM). Numerical simula-

tions are then used to provide further insight into these different

regimes.

Experiment
Methods
An AFM (Asylum Research, Santa Barbara, CA) with a high

frequency cantilever holder is used. Experiments were

conducted using silicon Olympus cantilevers. Three different

models were tried – AC240, AC200, and AC160 – which

have nominal stiffness values of approximately 2, 9, and

26 N/m. Similar results were obtained for all cantilever models,

and representative results for AC200 cantilevers are shown

here.

The optical lever sensitivity (also known as “invOLS”) of the

first, second, and third eigenmodes was obtained from dynamic

approach curves on a mica surface (in repulsive regime on a

stiff surface, the amplitude decreases by approximately 1 nm

when the z-piezo is displaced by 1 nm [10]). The sensitivity of

the fourth eigenmode could not be obtained in this way because

the modal stiffness was too high (relative to the tip–sample

contact stiffness). Therefore the fourth eigenmode sensitivity

was estimated based on Euler–Bernoulli beam theory and the

data for the lower order modes. The stiffness of each eigen-

mode was calibrated by using the thermal tune method [11,12].

The thermal response of the fourth eigenmode was sometimes

too small to give a meaningful calibration, and in this case the

stiffness was estimated from beam theory. The natural

frequency ω4, however, can be measured precisely, and the ratio

ω4/ω3 is within 7% of the value predicted by beam theory,

suggesting that the stiffness should not be too far from beam

theory predictions either.

Care was taken to tune the driving frequency exactly to the

natural frequency before every experiment. The effects of

squeeze film damping [13] are such that the phase can change

by an appreciable amount (10 degrees) when the cantilever is

moved a few micrometers away from the surface. Further, piezo

resonances can distort the tuning curve. For plain AM-AFM at

the first natural frequency, piezo resonances are generally only

an issue in liquid [14]. However, on our instrument, piezo reso-

nances can distort the higher eigenmode tuning curves signifi-

cantly, especially for third and higher eigenmodes. Therefore, a

thermally driven spectrum was obtained when the cantilever

was positioned approximately 100 nm above the surface. A

curve fit to the thermal spectum was used to determine the

natural frequency [14]. The drive frequency was then set to this

frequency, and the phase (lag) offset was set to 90 degrees.
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The sample used was a ternary polymer blend consisting of

isotactic polypropylene (PP, ExxonMobil Chemical Company),

high density polyethylene (PE, ExxonMobil Chemical

Company), and polystyrene (PS, Polysciences). A blend of

3:1:1 (by mass) of PP/PE/PS was prepared in a Brabender mixer

(Brabender Instruments, South Hackensack, NJ) at 180 °C,

60 rpm, and 5 min of mixing and then compression molded into

a bar. This was then cryo-cut using a microtome (Ultracut 6,

Leica Mikrosysteme GmbH, Vienna, Austria) at −120 °C with a

glass and a diamond knife prior to AFM imaging. This sample

was chosen because the individual components are well charac-

terized and can be easily distinguished in AFM images based on

morphology, surface roughness, and height. Specifically, the

matrix (dominant component) is polypropylene, with approxi-

mately circular polyethylene and polystyrene domains. The

polyethylene domains appear rough because of the lamellar

structure, and the polystyrene domains show fracture marks

from the cryomicrotoming. Dynamic mechanical analysis using

time-temperature superposition was performed on each compo-

nent individually by using the method described in [15].

Results
The first experiment that was carried out was to compare two

scans where all parameters were the same except for the choice

of higher eigenmode (e.g., “1st + 2nd” eigenmodes versus

“1st + 4th”). The objective was to determine if the two scans

showed the same type of contrast between the components, and

to determine if one scan showed better contrast or higher resolu-

tion. Typical results of bimodal imaging with various higher

order modes on the ternary blend sample are shown in Figure 1.

The cantilever parameters were k1 = 4 N/m, Q1 = 212

(remaining parameters given in Table 1). Two different scans

are compared. The first scan is a bimodal image using the 1st

and 2nd eigenmodes (left column (a,c,e)), and the second scan

is a bimodal image using the 1st and 4th eigenmodes (right

column (b,d,f)). In both cases, the free amplitude of the 1st

eigenmode was 50 nm, the setpoint was 50%, and the free

amplitude of the higher eigenmode (either 2nd or 4th) was

2.5 nm. There are several interesting differences between the

“1st + 2nd” bimodal image and the “1st + 4th” bimodal image.

The first observation involves relative contrast between the

three different materials present in the blend. The contrast

between the PP and PS domains are very similar in all the

images. However, the contrast between the PE domain and the

PP or PS domains changes. When considering the “1st + 2nd”

scan (left column), the polyethylene has a higher (brighter)

amplitude (a) and phase lag (c) than either the polystyrene or

the polyproylene. However, in the “1st + 4th” scan (right

column) the contrast is exactly reversed. The polyethylene has a

lower (darker) amplitude (b) and phase (d) than either the poly-

styrene or the polypropylene.

Figure 1: An 11 × 11 micrometer scan of a three component polymer
blend (PS, PP, PE) imaged with an Olympus AC200 cantilever in two
different modes: The left column (a,c,e) is “classical” bimodal AFM with
the 1st and 2nd natural frequencies excited, and the right column
(b,d,f) is bimodal AFM with the 1st and 4th natural frequencies excited.
The eigenmode shapes are drawn above each column. The free ampli-
tudes were the same in both cases (50 nm at the 1st eigenmode, and
2.5 nm at the 2nd or 4th eigenmode, respectively). Comparing the
polyethylene (PE) to the other components, both the amplitude (a,b)
and the phase lag (c,d) have a contrast between the modes. For the
“1st + 2nd” image, PE has the highest A2 and , but for the “1st + 4th”
image, PE has the lowest A4 and .  (e)(f) also shows a distinct
different between the two imaging modes. The scale bar is 2 μm.

Table 1: Calibrated cantilever parameters for the experiments.

mode 1 2 3 4

stiffness (N/m) 4 78.5 366 1330a

quality factor 212 457 507 600a

natural frequency (kHz) 117 674 1758 3235
aValues are estimates.

A second observed difference between the bimodal images in

“1st + 2nd” eigenmode versus “1st + 4th” eigenmode occurs in

the first eigenmode phase (lag) channel. The overall first eigen-
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mode phase (lag) has decreased considerably (darker) between

the “1st + 2nd” scan (e) and the “1st + 4th” scan (f). The change

in the first eigenmode phase is surprising because the bimodal

AFM literature has generally treated the second frequency as an

independent channel that provides additional information but

does not affect the response of the first eigenmode [2,5,16,17].

The argument is that the first eigenmode is unaffected by the

higher frequency oscillation because the first eigenmode ampli-

tude is more than an order of magnitude larger than the higher

eigenmode amplitude. For example, in [8] it was recently

demonstrated experimentally that when A1,free/A2,free = 10 : 1

(or greater) there is no apparent coupling between the 1st and

2nd eigenmodes, but that when A1,free/A2,free = 1 : 1 there is a

coupling between the eigenmodes. However, in Figure 1f, we

are using a ratio of A1,free/A4,free = 20 : 1, but yet we see a

strong change in the first eigenmode, indicating some coupling

between the eigenmodes. Therefore, we conclude that a large

amplitude ratio is a necessary but not sufficient condition for

the two eigenmodes to be uncoupled. Later, we will attempt to

determine a sufficient condition for the eigenmodes to be

uncoupled.

These two features, a contrast reversal between PE and PP in

the higher eigenmodes and an overall drop in the first eigen-

mode phase, were repeatable across multiple different

cantilevers on different days, on different cantilever models

with stiffness from 2 to 26 N/m, on different locations on the

sample, and on different samples. Similar results to the

“1st + 4th” higher order eigenmode amplitude contrast reversal

and lowering of first order eigenmode phase were also observed

in “1st + 3rd” bimodal imaging. We chose to focus on

“1st + 4th” imaging instead of “1st + 3rd” because the 4th

eigenmode was more novel experimentally.

We first discuss the PE/PP contrast reversal in the higher eigen-

modes. Broadly speaking, we could imagine two possible expla-

nations for these results. First, it could be that the tip–sample

interaction probed by the fourth eigenmode is significantly

different to the interaction probed by the second eigenmode

(e.g., due to viscoelasticity). Alternatively, it could be that there

is a difference in the cantilever dynamics at the fourth eigen-

mode such that it responds to the exact same tip–sample inter-

action in a different way. Next we show experiments designed

to distinguish between these two possibilities.

Regarding the second possibility, it was pointed out in [18] that

in bimodal AFM, the fundamental quantity may not be the ratio

of the amplitudes of the two eigenmodes, but rather the ratio of

the energy of the two eigenmodes. In our case, we compared the

“1st + 2nd” scan and the “1st + 4th” scan at the exact same free

amplitudes. But because k4 > k2, they were not compared at the

Figure 2: Using the same cantilever and sample from Figure 1, the
imaging modes are compared at different energy levels. In the top row
(a, b) the first eigenmode has a larger energy than the higher mode
(2nd or 4th respectively). In the bottom row (c, d), the first eigenmode
energy is comparable to the higher eigenmode energy. In the top row,
the PE has the highest phase lag, whereas in the bottom row the PE
has the lowest phase lag. This shows that the contrast reversal
observed in Figure 1 is not caused by the choice of eigenmode alone,
but by the energy in the eigenmode. The scale bar is 2 μm.

same energy levels. Understanding the energy flow while

tapping on the sample can be complicated (because of energy

transfers between eigenmodes analogous to [19]). Therefore, as

a first approximation, consider the kinetic energy of a freely

vibrating (no tip–sample interaction) cantilever eigenmode,

which is  (both kinetic and potential energy give

the same result; derivation in Supporting Information File 1).

For the conditions under which the data in Figure 1 were

collected, E1/E2 = (4(502))/(78.5(2.52)) = 20.4. So the first

eigenmode has much more energy than the second eigenmode.

But when comparing the first and fourth eigenmodes we find

E1/E4 = (4(502))/(1330(2.52)) = 1.2. Therefore the fourth eigen-

mode actually has approximately the same energy as the first

eigenmode.

To evaluate which effect the eigenmode energy has on the

results, we repeat the experiment except this time we consider

not just the choice of eigenmode, but also adjust the drive

amplitudes to control the eigenmode energy level. This leads

to four bimodal scans: Figure 2a “1st + 2nd” modes with

E2 << E1; Figure 2b “1st + 4th” modes with E4 << E1;

Figure 2c “1st + 2nd” with E2 ≈ E1; and Figure 2d “1st + 4th”

modes with E4 ≈ E1. The scans in (a) and (d) were taken under

the same conditions as those in Figure 1. It is clear that the PE/

PP contrast is similar between the “1st + 2nd” and “1st + 4th”

cases as long as the energies are kept the same. That is, for
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E2 << E1 or E4 << E1, PE is bright with respect to PP as shown

in Figure 2a and Figure 2b. For E2 ≈ E1 or E4 ≈ E1, PE is dark

with respect to PP as shown in Figure 2c and Figure 2d. This

suggests that the contrast reversal is due solely to the relative

eigenmode energy levels, and not to the choice of eigenmode.

Further, in Figure 3, it can be seen that the first eigenmode

phase (lag) shows the same pattern: the drop in phase is due to

the relative eigenmode energy levels. When the relative energy

in the first eigenmode dominates (a and b),  is relatively high,

but when the two eigenmodes have about the same energy (c

and d), then  is relatively low. How can this change in phase

be interpreted? The meaning of phase angles in AM-AFM is a

difficult topic that is frequently misinterpreted. In AM-AFM

imaging, it is not possible to separately identify the conserva-

tive (e.g., elastic) and dissipative (e.g., viscous) components of

the tip–sample interaction by using the first eigenmode phase

(in contrast to FM-AFM imaging, or higher eigenmode imaging

in bimodal AFM). Instead, the first eigenmode phase gives

information about the ratio of the dissipative interaction to the

conservative interaction. The lower phase lag in (c) and (d)

indicates a lower ratio of dissipative interaction to conservative

interaction (i.e., either less dissipation, higher conservative

forces, or both), as compared to (a) and (b). It appears that there

are two distinct operating regimes in bimodal AFM, which have

distinctly different responses to material property contrast and

distinctly different energy dissipations in the first eigenmode. In

the next section, numerical simulation is used to provide further

insight into this second regime.

Simulation
Modeling
In order to provide insight into the physical processes at work,

we use numerical simulations. The VEDA simulator (a freely

available, open-source, web-based [20] AFM simulator devel-

oped by the authors) is used for numerical simulation. A full

description of the simulator is given in [21,22]. Here we review

the features relevant to the present work. The modeling starts

with the Euler–Bernoulli partial differential equation for deflec-

tions of a slender, rectangular cantilever beam in a ground-fixed

inertial frame, subject to a hydrodynamic damping force, a

driving force, and a tip–sample interaction force

(1)

where E, I, ρc, A, w, x, t, Fhydro, Fts, Fdrive and δ are the

cantilever Young’s modulus, area moment of inertia, density,

cross-sectional area, deflection, axial coordinate, time, hydrody-

Figure 3: The same experiment as Figure 2, plotting first eigenmode
phase lag . In the top row (a, b) the first eigenmode has a larger
energy than the higher mode (2nd or 4th, respectively). In the bottom
row (c, d), the first eigenmode energy is comparable to the higher
eigenmode energy. The first eigenmode phase drops considerably
between the top and bottom rows, indicating that in the high energy
state there is a nonlinear coupling between the eigenmodes that is
affecting the first eigenmode. This is clearly due to the energy ratios,
and not the choice of higher eigenmode (i.e., little difference between
left and right columns). The scale bar is 2 μm.

namic force, tip–sample interaction force, driving (excitation

force), and Dirac delta, respectively. The hydrodynamic forces

are converted into an effective modal viscosity and added mass

[23], and then the equation is discretized in the basis of

cantilever eigenmodes by Galerkin’s method following [24].

The method is to write w as

where ψi(x) is the ith eigenmode shape and qi(t) is referred to as

a modal coordinate. ψ is chosen such that ψi(L) = 1 so that the

modal coordinates are the deflection of the cantilever at the free

end. This scaling is important because it allows the calibrated

stiffnesses of the eigenmodes to be incorporated directly into

the model [24]. An approximation is made by keeping only the

first N eigenmodes. We take N = 4 in this work. This reduces

the original equation to a set of four ordinary differential equa-

tions:

(2)

where qi(t), ωi, Qi, and ki, are the tip deflection, natural

frequency (rad/s), quality factor, and equivalent stiffness, res-

pectively, and
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is the tip–sample gap, where Z is the cantilever–sample sep-

aration. A bimodal excitation is used where Ω1 is the first

driving frequency, Ω2 is the second driving frequency, Fi1 is the

force on the ith eigenmode due to the first excitation and Fi2 is

the force on the ith eigenmode due to the second excitation. In

this work, we take Ω1 = ω1 and Ω2 = ω2 to simulate bimodal

driving of the 1st and 2nd eigenmodes.

The tip–sample interaction force Fts(d) is described by a modi-

fied DMT model that includes a term for surface energy

hysteresis. In other words, the force when the tip is approaching

the sample is different from the force when the tip is retracting

from the sample. The model is based on the one proposed by

[25] and is described in detail in Supporting Information File 1.

Simulations Results
Figure 4 shows two simulations of a line scan in AM-AFM. The

line scan crosses over two different materials that are located

side by side. The material on the left (red lines) has a Young’s

modulus of 3 GPa and the one on the right (blue lines) has a

modulus of 2 GPa. These values are close to the storage

modulus from dynamic mechanical analysis (time–temperature

superposition was used to obtain the value at 250 kHz) for

polypropylene and polyethylene at 250 kHz, respectively. Both

materials have a surface energy hysteresis term of 0.06 J/m2

(chosen to approximately match the average energy dissipation

in AM-AFM experiments). The same first eigenmode ampli-

tude is used for both simulations, while two different drive

amplitudes are chosen for the second eigenmode: (b) and (d)

show a larger amplitude for which E2 ≈ E1; (a) and (c) show a

smaller amplitude for which E2 << E1. These conditions were

chosen to approximately match the experiments. The full para-

meters for the simulation are given in Table 2.

The results in Figure 4 qualitatively match the features in the

experiment. Specifically, for the smaller amplitude (1 nm, a and

c), the second eigenmode phase (lag) on the softer (blue) ma-

terial is higher. But for the larger amplitude (4.1 nm, b and d),

the contrast between the two materials reverses and the second

eigenmode phase (lag) on the softer (blue) material is lower.

This contrast reversal qualitatively matches the experimentally

observed contrast reversal from Figure 2. Also, the first eigen-

mode phase drops significantly for the larger second eigen-

mode amplitude, as shown in Figure 4c and Figure 4d, which is

exactly the trend noted in the experiments in Figure 3.

To further explore this phenomenon, we perform a simulation in

which the cantilever is tapping on a surface with the normal

Figure 4: Simulated line scans for the parameters in Table 2 and two
different second eigenmode drive amplitudes. The simulated sample is
a PE domain in the center of a PP matrix. Comparing (a) versus (b),
there is a clear contrast reversal of  between the low and high
second eigenmode drive. This matches the experimental observations
of Figure 2. Further, comparing (c) versus (d),  drops as A2,init is
raised. This matches the experimental observation in Figure 3.

Table 2: Simulation parameters. Hamaker constant and surface
energy are tuned to match the experiment. All other values are
measured or nominal values.

mode 1 mode 2

stiffness (N/m) 4 160
quality factor 200 400
natural frequency (kHz) 10 344
driving frequency (kHz) 10 344
free amplitude (nm) 40 varies
setpoint ratio 50%
sample modulus (GPa) 2–3
van der Waals adhesion force (nN) 1.4
tip radius (nm) 10
intermolecular distance (nm) 0.2
surface energy change (J/m2) 0.06

feedback controller on while the second eigenmode drive ampli-

tude (and hence second eigenmode energy) is slowly increased

from zero to a maximum amplitude and then slowly decreased

back to zero, as shown in Figure 5. There are two abrupt jumps

in the response as the drive is changed. This plot suggests that

there are not two but three distinct operating regimes in bimodal

AFM, depending on the amplitudes of the eigenmodes. Further,

there is a hysteresis, i.e., the jump up and jump down do not



Beilstein J. Nanotechnol. 2013, 4, 385–393.

391

happen at the same amplitude, indicating the presence of a

bistability. Two different states are possible for the same combi-

nation of parameters (similar to the attractive/repulsive bista-

bility in conventional AM-AFM).

Figure 5: A simulation in which the second eigenmode drive ampli-
tude is swept up and then down continuously. The feedback controller
remains active so that a constant setpoint is maintained (i.e., A1 is
constant). The parameters are given in Table 2. The lower x-axis
shows the second eigenmode amplitude and the upper x-axis the ratio
of the first and second eigenmode energies (both quantities calculated
based on the free case). Interestingly, there are two discrete jumps in
the second eigenmode response indicating that there are three distinct
dynamic states. Further, the jumps do not occur at the same ampli-
tude on sweep up versus sweep down, indicating that the states are
bistable.

A question that naturally arises is whether the amplitude and

phase contrast reversals observed earlier have any correlation

with the jumps between the different states. To this end, in

Figure 6 amplitude sweeps are shown on two different ma-

terials (in this case, E = 2.0 GPa and E = 2.2 GPa, and the drive

is swept from a high amplitude down to a low amplitude,

corresponding to the range of amplitudes used in Figure 4). In

fact, the contrast reversal correlates exactly to the different

states. In the left state (lower A2,free), both A2 (Figure 6a) and

 (Figure 6a) on the stiffer material are lower than on the

softer material. In the right state (higher A2,free), both A2 and 

on the stiffer material are higher than on the softer material. In

the middle state, there is not much differentiation between the

materials. Note that the jumps between states happen at a

slightly different drive amplitude depending on the sample

modulus. This is the reason that E = 2.0 GPa and E = 2.2 GPa

were picked for this simulation. For E = 2.0 GPa versus

E = 3.0 GPa, the jumps happen at very different amplitudes and

it is more difficult to make a comparison. Because there is less

contrast in modulus (as compared to the experiment), there is

less contrast in phase in Figure 6 than observed in the experi-

ment. Furthermore, Figure 6c shows a drop of  as the eigen-

mode amplitude (and hence energy) is increased as well. This is

consistent with the experimental observations in Figure 3.

Figure 6: A drive amplitude sweep similar to Figure 5 except that two
different materials are compared (both are sweeps from high ampli-
tude down to low amplitude). The transitions between the different
states happen at slightly different amplitudes for each material. It is
clear from (a) and (b) that the contrast reversal observed in Figure 1,
Figure 2, and Figure 4 is caused by the transition from one state to
another. That is, in the state on the left (low A2,init), A2 and  on the
stiffer material are higher than A2 and  on the softer material. But, in
the state on the right (high A2,init), A2 and  on the stiffer material are
lower than A2 and  on the softer material. The middle state appears
to have very little contrast between the two materials. Finally,  drops
as A2,init is raised, with big drops at each state transition.

The fact that the cantilever dynamics behave differently

depending on the ratios of first and second eigenmode energy

has been previously suggested [18]. However, that work consid-

ered only a homogenous sample, so the possibility of contrast

reversal was not considered. Further, the fact that there are three

states separated by a discontinuous jump was not considered.

Why the contrast should reverse between the states is not imme-

diately obvious, but it clearly happens in both experiment and

simulation. To provide further insight, the simulation of

Figure 6 is repeated but with a purely conservative tip–sample

interaction (i.e., Hertz contact without energy dissipation). The
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result is shown in Figure 7. In this case there are no discontin-

uous jumps. There is a point at which the slope of the ampli-

tude and phase curves change, but there is no contrast reversal

in either. Also, there is essentially no change in the first eigen-

mode phase (not shown).

Figure 7: The simulation of Figure 6 repeated except with a pure Hertz
model (no energy dissipation). In comparison to Figure 6, there are no
sudden jumps and the second eigenmode contrast does not reverse.

Discussion
From a practical point of view, it is not immediately obvious if

bimodal imaging using the higher states is advantageous or not.

On the one hand, for certain combinations of parameters/ma-

terials, the material contrast (i.e., percent change in amplitude

for a given change in Young’s modulus) can be an order of

magnitude higher in these states than in standard bimodal

imaging. For example, in Figure 6a, the two materials are essen-

tially indistinguishable for A2,free < 2.5 nm, but are very clearly

separated for A2,free > 2.8 nm. This is consistent with a previous

report [8] that suggested better contrast on polymers might

be achieved with higher A2,free. On the other hand, there is

bistability between the different regimes. This may cause diffi-

culties in imaging, as the attractive/repulsive regimes in

conventional AM-AFM do. It may be possible to overcome

the bistability by using frequency modulation, phase modula-

tion or other newer feedback control schemes, such as drive

modulation.

From a theoretical point of view, more research is needed to

understand the nature of the different states and exactly why the

contrast should reverse. The fact that there is no contrast

reversal for the elastic case in Figure 7 suggests that the

tip–sample energy dissipation plays a key role in the contrast

reversal. Presumably, an energy transfer between the eigen-

modes is involved.

Practically, this result reinforces the suggestion of Stark [18]

that energy ratios and not amplitude ratios are the important

quantity to consider in bimodal AFM. Researchers using AFM

will be able to select operating conditions more intelligently if

they calculate the energy ratios involved instead of amplitude

ratios.

Finally, the importance of energy ratios highlights the need for

better methods to calibrate stiffness and optical lever sensitivity

of higher order eigenmodes. The current state of the art works

well for the first few eigenmodes but becomes less reliable for

third and higher modes. As multifrequency AFM evolves

toward quantitative measurements using higher order eigen-

modes, interferometer based AFMs, which do not suffer from

these calibration problems, may become more attractive than

optical lever (photodiode) based AFMs.

Conclusion
We have shown experimentally that there are multiple distinct

imaging regimes in bimodal AFM. The different states were

identified by contrast reversals on a multicomponent polymer

blend. Higher eigenmode bimodal AFM (e.g., “1st eigenmode +

4th eigenmode”) behaves essentially the same as traditional

bimodal AFM (“1st + 2nd”), when operated at similar energy

levels. When the energy of the higher eigenmode is much

smaller than the energy of the first eigenmode, then the two

eigenmodes are essentially uncoupled. This is the regime that

the majority of classical bimodal AFM studies have explored.

When the energy of the higher eigenmode is comparable to the

energy of the first eigenmode, there are additional distinct

imaging regimes involving coupling between the eigenmodes.

We have shown that the experimentally observed contrast rever-

sals can be qualitatively predicted by the use of numerical simu-

lation. Further, the numerical simulation has shown that there

are actually three distinct imaging regimes in bimodal AFM,

and that the discontinuous jumps and contrast reversals are in

some way caused by dissipative tip–sample interactions.

The understanding of the different imaging regimes discovered

in this work will be of great help to AFM researchers by

allowing them to choose their operating parameters intelli-

gently so as to maximize material contrast.

Supporting Information
The Supporting Information contains two appendices: (1) a

detailed description of the tip–sample interaction model

used in the simulations and (2) a brief derivation of the

kinetic/potential energy of an eigenmode.

Supporting Information File 1
Appendices

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-4-45-S1.pdf]
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